G | Aut(G) | Order of G | Number of involutions | Number of Polytopes |
---|---|---|---|---|
M11 | M11 | 7920 | 165 | 0 |
M12 | M12:2 | 95040 | 891 | 37 = 23+14 |
M12:2 | M12:2 | 190080 | 1683 | 266 = 223+43 |
J1 | J1 | 175560 | 1463 | 150 = 148+2 |
M22 | M22:2 | 443510 | 1155 | 0 |
M22:2 | M22:2 | 887040 | 2871 | 195 = 133+62 |
J2 | J2:2 | 604800 | 2835 | 154 = 137+17 |
J2:2 | J2:2 | 1209600 | 4635 | 452 = 368+82+2 |
M23 | M23 | 10200960 | 3795 | 0 |
HS | HS:2 | 44352000 | 21175 | 311 = 252+57+2 |
J3 | J3:2 | 50232960 | 26163 | 305 = 303+2 |
M24 | M24 | 244823040 | 43263 | 647 = 490+155+2 |
McL | McL:2 | 898128000 | 22275 | 0 |
He | He:2 | 4,030,387,200 | 212415 | 1264 = 1188+76 |
Ru | Ru | 145,926,144,000 | 1846575 | 21821 = 21594+227 |
Suz | Suz:2 | 448,345,497,600 | 2915055 | 7389 = 7119+257+13 |
O'N | O'N:2 | 460,815,505,920 | 2857239 | 6552 = 6536 + 16 |
Co3 | Co3 | 495,766,656,000 | 2778975 | 11481 = 10586+873+22 |
G | Aut(G) | Order of G | Number of involutions | Number of Polytopes |
---|---|---|---|---|
Alt(5) = PSL(2,4) = PSL(2,5) | Sym(5) | 60 | 15 | 2 |
Sym(5) | Sym(5) | 120 | 25 | 5 = 4+1 |
Alt(6) = PSL(2,9) | PΓL(2,9) | 360 | 45 | 0 |
PGL(2,9) | PΓL(2,9) | 720 | 81 | 14 |
Sym(6) = PΣL(2,9) | PΓL(2,9) | 720 | 75 | 7 = 2+4+1 |
M10 | PΓL(2,9) | 720 | 45 | 0 |
PΓL(2,9) | PΓL(2,9) | 1440 | 111 | 12 |
Alt(7) | Sym(7) | 2520 | 105 | 0 |
Sym(7) | Sym(7) | 5040 | 231 | 44 = 35+7+1+1 |
Alt(8) | Sym(8) | 20160 | 315 | 0 |
Sym(8) | Sym(8) | 40320 | 763 | 117 = 68+36+11+1+1 |
Alt(9) | Sym(9) | 181440 | 1323 | 47 = 41+6 |
Sym(9) | Sym(9) | 362880 | 2619 | 182 = 129+37+7+7+1+1 |
Sym(10) | Sym(10) | 3628800 | 9495 | 690=413+203+52+13+7+1+1 |
Sym(11) | Sym(11) | 39916800 | 35695 | 1496=1221+189+43+25+9+7+1+1 |
Sym(12) | Sym(12) | 479001600 | 140151 | 4602=3346+940+183+75+40+9+7+1+1 |
Sym(13) | Sym(13) | 6227020800 | 568503 | 8414=7163+863+171+123+41+35+9+7+1+1 |
G | Aut(G) | Order of G | Number of involutions | Number of Polytopes |
---|---|---|---|---|
Alt(5) = PSL(2,4) = PSL(2,5) | Sym(5) | 60 | 15 | 2 |
Sym(5) | Sym(5) | 120 | 25 | 5 = 4+1 |
PSL(3,2) = PSL(2,7) | PΓL(2,7) | 168 | 21 | 0 |
PGL(2,7) = PΓL(2,7) | PΓL(2,7) | 336 | 49 | 16 |
Alt(6) = PSL(2,9) | PΓL(2,9) | 360 | 45 | 0 |
PGL(2,9) | PΓL(2,9) | 720 | 81 | 14 |
PΣL(2,9) | PΓL(2,9) | 720 | 75 | 7 = 2+4+1 |
M10 | PΓL(2,9) | 720 | 45 | 0 |
PΓL(2,9) | PΓL(2,9) | 1440 | 111 | 12 |
PSL(2,8) = PGL(2,8) | PΓL(2,8) | 504 | 63 | 7 |
PΓL(2,8) = PΣL(2,8) | PΓL(2,8) | 1512 | 63 | 0 |
PSL(2,11) = PΣL(2,11) | PΓL(2,11) | 660 | 55 | 4 = 3+1 |
PGL(2,11) = PΓL(2,11) | PΓL(2,11) | 1320 | 121 | 42 |
PSL(2,13) = PΣL(2,13) | PΓL(2,13) | 1092 | 91 | 11 |
PGL(2,13) = PΓL(2,13) | PΓL(2,13) | 2184 | 169 | 59 |
PSL(2,17) = PΣL(2,17) | PΓL(2,17) | 2448 | 153 | 16 |
PGL(2,17) = PΓL(2,17) | PΓL(2,17) | 4896 | 289 | 110 |
PSL(2,19) = PΣL(2,19) | PΓL(2,19) | 3420 | 171 | 18 = 17+1 |
PGL(2,19) = PΓL(2,19) | PΓL(2,19) | 6840 | 361 | 140 |
PSL(2,16) = PGL(2,16) | PΓL(2,16) | 4080 | 255 | 27 |
PSL(2,16):2 | PΓL(2,16) | 8160 | 323 | 26 = 21+5 |
PΓL(2,16) = PΣL(2,16) | PΓL(2,16) | 16320 | 323 | 0 |
PSL(3,3) = PGL(3,3) = PΣL(3,3) = PΓL(3,3) | PSL(3,3):2 | 5616 | 117 | 0 |
PSL(3,3):2 | PSL(3,3):2 | 11232 | 351 | 68 = 67+1 |
PSL(2,23) = PΣL(2,23) | PΓL(2,23) | 6072 | 253 | 28 |
PGL(2,23) = PΓL(2,23) | PΓL(2,23) | 12144 | 529 | 212 |
PSL(2,25) | PΓL(2,25) | 7800 | 325 | 17 |
PGL(2,25) | PΓL(2,25) | 15600 | 625 | 127 |
PΣL(2,25) | PΓL(2,25) | 15600 | 455 | 51 = 34+17 |
PSL(2,25).2 | PΓL(2,25) | 7800 | 325 | 0 |
PΓL(2,25) | PΓL(2,25) | 31200 | 755 | 64 |
PSL(2,27) | PΓL(2,27) | 9828 | 351 | 14 |
PGL(2,27) | PΓL(2,27) | 19656 | 729 | 98 |
PΣL(2,27) | PΓL(2,27) | 29484 | 351 | 0 |
PΓL(2,27) | PΓL(2,27) | 58968 | 729 | 0 |
PSL(2,29) = PΣL(2,29) | PΓL(2,29) | 12180 | 435 | 50 |
PGL(2,29) = PΓL(2,29) | PΓL(2,29) | 24360 | 841 | 337 |
PSL(2,31) = PΣL(2,31) | PΓL(2,31) | 14880 | 465 | 51 |
PGL(2,31) = PΓL(2,31) | PΓL(2,31) | 29760 | 961 | 394 |
PSL(3,4) | PSL(3,4).D12 | 20160 | 315 | 0 |
PSL(3,4).21 | PSL(3,4).D12 | 40320 | 595 | 4 |
PSL(3,4).3 = PGL(3,4) | PSL(3,4).D12 | 60480 | 315 | 0 |
PSL(3,4).3.23 | PSL(3,4).D12 | 120960 | 1323 | 52 = 50+2 |
PSL(3,4).3.22 = PΓL(3,4) | PSL(3,4).D12 | 120960 | 675 | 0 |
PSL(3,4).6 | PSL(3,4).D12 | 120960 | 595 | 0 |
PSL(3,4).D12 | PSL(3,4).D12 | 241920 | 1963 | 119 = 100+16+3 |
PSL(3,4).23 | PSL(3,4).22 | 40320 | 651 | 53 = 44+9 |
PSL(3,4).22 = PΣL(3,4) | PSL(3,4).22 | 40320 | 435 | 0 |
PSL(3,4).22 | PSL(3,4).22 | 80640 | 1051 | 147 = 88+59 |
PSL(2,32) = PGL(2,32) | PΓL(2,32) | 32736 | 1023 | 93 |
PΓL(2,32) = PΣL(2,32) | PΓL(2,32) | 163680 | 1023 | 0 |
PSL(3,5) = PΣL(3,5) = PGL(3,5) = PΓL(3,5) | PSL(3,5):2 | 372000 | 775 | 0 |
PSL(3,5):2 | PSL(3,5):2 | 744000 | 3875 | 498 = 496+2 |
PSL(4,3) | PGL(4,3):2 | 6065280 | 7371 | 18 = 9+9 |
G | Aut(G) | Order of G | Number of involutions | Number of Polytopes |
---|---|---|---|---|
PSU(3,3) = PGU(3,3) | PΓL(3,3) | 6048 | 63 | 0 |
PΓU(3,3) = PΣU(3,3) | PΓU(3,3) | 12096 | 315 | 31 = 25+6 |
PSU(4,2) = PGU(4,2) | PΓU(4,2) | 25920 | 315 | 0 |
PΓU(4,2) = PΣU(4,2) | PΓU(4,2) | 51840 | 891 | 147 = 87+50+10 |
PSU(3,4) = PGU(3,4) | PΓU(3,4) | 62400 | 195 | 0 |
PSU(3,4):2 | PΓU(3,4) | 124800 | 1235 | 80 = 78+2 |
PΣU(3,4) = PΓU(3,4) | PΓU(3,4) | 249600 | 1235 | 0 |
PSU(3,5) | PΓU(3,5) | 126000 | 525 | 0 |
PGU(3,5) | PΓU(3,5) | 378000 | 525 | 0 |
PΓU(3,5) | PΓU(3,5) | 756000 | 3675 | 247 = 237+10 |
PΣU(3,5) | PΣU(3,5) | 252000 | 1575 | 116 = 105+11 |
G | Aut(G) | Order of G | Number of involutions | Number of Polytopes |
---|---|---|---|---|
Sz(8) | Sz(8):3 | 29120 | 455 | 7 |
Sz(8):3 | Sz(8):3 | 87360 | 455 | 0 |