SPARSE REPRESENTATIONS (OF POETS, GROUPS, MONOIDS) and categories

Jaroslav NEŠETRIL
CHARLES UNIVERSITY prague

SPARSE REPRESENTATIONS (OF POETS, GROUPS, MONOIDS)
and categories

Jaroslav NEŠETRIL
CHARLES UNIVERSITY
prague

MARSTON CORDER FEST FEB 17,2016

SPARSE REPRESENTATIONS (OF POSES, GROUPS, MONOIDS) and categories

Jaroslav NEŠETRIL
CHARLES UNIVERSITY
prague
patrice Ossona de Mendez EHESS \& CHARLES UNIVERSITY PARIS prague

MARSTON CINDER FEST FEB 17, 2016

Contents

1. REPRESENTATION \& UNIVERSALITY (CLASSICAL EXAMPLES)
2. SPARSE SMALL EXAMPLES
3. negative results
4. SPARSE -DENSE HIERARCHY
5. CHARACTERISATIONS?
I. (MOTIVATING) CLASSICAL

- EVERY GROUP IS THE AUTHOMORPHISM GROUP OF A GRAPH
(CAyLEy, fRUCht)
I. (MOTIVATING) CLASSICAL
- EVERY GROUP IS THE AUTHOMORPHISM GROUP OF A GRAPH
(CAyLEy, fRucht)
- every posed may be represented by SETS AND INCLUSION (DEDEKIND, MCNEIL)
I. (MOTIVATiNG) CLASSICAL
- EVERY GROUP IS THE AUTHOMORPHISM GROUP OF A GRAPH
(CAYLEY, FRUChT)
- every posed may be represented BY SETS AND INCLUSION
(DEDEKIND, MCNEIL)
- EVERY MONOID IS THE ENDOMORPHISM MONOID OF A GRAPH
(HEDRLIN, PULTR)

Particular examples OF COMMON FRAMEWORK

CLASS OF ALGEBRAIC structures

REPRESENTATION
"concren" CLASS
(HOPEPLLLCY) SIMPLER

Particular Examples OF COMMON FRAMEWORK

CLASS of AlGEBRAIC structures

representation EMBEDDING
"CONCRETE" CLASS
(HOPEFULLY) SIMPLER

EMBEDDING OF A CATEGORY INTO A "SIMPLER" "concrete".

SIMPLER
(IN THE FINITE CASE)

FINite case only

EXAMPLES ABUNDANT

POETS

THM (J.HUBIC̄KA, J.N.) 2004
every countable posed MAY be REPRESENTED BY THE CLASS OF FINITE ORIENTED PATHS AA D EXISTENCE OF HOMOMORPHISM

THM (J.FIALA, J.HUBIČKA, Y. LONG) 2015
every countable poset may be REPRESENTED BY ORIENTED GRAPHS WITH ALL IN- AND out-degrees equal to 1 and the existence OF A HOMOMORPHISM

$$
\vec{C}_{k} \longrightarrow \vec{C}_{l} \text { VF }\left.\quad \ell\right|_{k}
$$

CONTE QUENCES
all posets represented by

- planar Graphs of all degrees

$$
\leq 3
$$

- OUTER PLANAR GRAPHS WITH

AMAZING HOMOMORPHISM ORDER OF GRAPHS
$\left(\varphi_{1} \leq\right)=$ ALL FINITE GRAPHS

$$
\begin{aligned}
& \quad+ \\
& G G^{\prime} \text { INF } \\
& \exists \text { HOMOMORPHISM }
\end{aligned}
$$

AMAZING HOMOMORPHISM ORDER OF GRAPHS
$\left(\varphi_{1} \leq\right)=$ ALL FINITE GRAPHS

$$
\begin{aligned}
\quad \leq^{\prime} & \\
& G \rightarrow G^{\prime} \text { AF } \\
&
\end{aligned}
$$

$-\left(\varphi_{1} \leq\right)$ universal

AMAZING HOMOMORPHISM ORDER of GRAPHS
$\left(\varphi_{1} \leqslant\right)=\begin{gathered}\text { ALL FINITE GRAPHS } \\ +\end{gathered}$

$$
G \leq G^{1^{\prime} \text { IFS } \quad \exists \text { HOMOMORPHISM }} \quad \underset{G \rightarrow G^{\prime}}{ }
$$

- $\left(\varphi_{1} \leqslant\right)$ universal
$-\left(\varphi_{1} \leq\right)$ dense (Gaps characters)

AMAZING HOMOMORPHISM ORDER of GRAPHS
$\left(\varphi_{1} \leq\right)=$ ALL FINITE GRAPHS

$$
G \leq G^{\prime}{ }^{+} \text {IVF } \underset{G \rightarrow G^{\prime}}{\exists \text { номомов PHISH }}
$$

- ($\left.\varphi_{1} \leq\right)$ universal
- $\left(\varphi_{1} \leq\right)$ dense (Gaps charactery)
- Every interval

$$
\begin{aligned}
& \text { EVERY INTERVAL } \\
& {[G, H]=\left\{G^{\prime} ; G \leqslant G^{\prime} \leqslant H\right\}}
\end{aligned}
$$

ether contains a gap OR IT IS UNIVERSAL
"FRACTAL PROPERTY"
(FIALA, HUBICKA, LONG, N. 2016)

- EVERY FINITE GROUP IS THE AUTOMORPHISM GROUP OF A CUBIC GRAPH (SABIDUSSI; HELL, N.)

- EvERY FINITE GROUP IS THE AUTOMORPHISM GROUP OF A CUBIC GRAPH
(SABIDUSSI; HELLS.)
- FOR EVERY FINITE GROUP G THERE EXIST A GRAPH G SUCH THAT 1. $\operatorname{AUT}(G) \simeq g$

2. $|G| \leqslant 2|g|$
(BABAI)

- EVERY FINITE GROUP IS THE AUTOMORPHISM GROUP OF A CUBIC GRAPH
(SABIDUSSI; HELL,N.)
- FOR EVERY FINITE GROUP G THERE EXIST A GRAPH: G SUCH THAT
A. $\operatorname{AUT}(G) \simeq g$

2. $|G| \leqslant 2|g|$
(BABAI)

- IF I A CLASS C OF GRAPHS REPRESENTS ALL FINITE GROUPS THEN EVERY GRAPH IS A MINOR OF A GRAPH IN e
(bABAI)

- EVERY FINITE GROUP IS THE AUTOMORPHISM GROUP OF A CUBIC GRAPH
(SABIDUSSI; HELL,N.)
- FOR EVERY FINITE GROUP G THERE EXIST A GRAPH :G SUCH THAT

1. AUT (G) $\simeq g$
2. $|G| \leqslant 2|g|$
(BABAI)

- IF A CLASS C OF GRAPHS REPRESENTS ALL FINITE GROUPS THEN EVERY GRAPH IS A MINOR OF A GRAPH IN e

NOT UNIVERSAL:

- PLANAR graphs
- graphs on surfaces

- EvERY FINITE MONOID is THE ENDOMORPHISM MONOID OF A GRAPH WITH A PRESCRIBED GIRTH

- EvERY Finite monoid is the ENDOMORPHISM MONOID OF A GRAPH WITH A PRESCRIBED GIRTH
- For every finite monoid M THERE EXISTS A GRAPH G
A. $\operatorname{END}(G) \simeq M$

2. $|G| \leqslant|M|^{3 / 2}$

THERE ARE MONOIDS M FOR WHICH $|M| \cdot \log |M|$ IS NEEDED

- Every finite monoid is the ENDOMORPHISM MONOID OF A GRAPH WITH A PRESCRIBED GIRTH
- For every finite monoid M THERE EXISTS A GRAPH G
A. $\operatorname{END}(G) \simeq M$

2. $|G| \leqslant|M|^{3 / 2}$

THERE ARE MONOIDS M FOR WHICH |M| .log $|M|$ IS NEEDED

- if M is a group then
$10|M|$ SUFFICES

$$
\text { N. } 15
$$ (FOR END (G) wM).

- If class \mathcal{E} of graphs REPRESENTS ALL FINITE MONOIDS THEN EVERY GRAPH IS A TOPOLOGICAL MINOR OF A GRAPH IN φ
(G TOPOLOGICAL Minor OF H)
H contains a subdivision of G BABAI, PULTR 80

- If class \mathcal{E} of graphs REPRESENTS ALL FINITE MONOIDS THEN EVERY GRAPH IS A TOPOLOGICAL MINOR OF A GRAPH IN φ
(G TOPOLOGICAL MINOR OF H)
H contains a subdivision of G BABAI, PULTR 80

CONSEQUENTLY:

- NO BOUNDED DEGREE GRAPHS UNIVERSAL FOR MONOIDS.

	REPRESENTED BY	NOT REPRESENTED BY
GROUPS	$\Delta \leq \alpha$	PROPER MINOR CLOSED
MONOIDS	GIRTH $\geqslant l$	PROPER TOPOLOGI MINOR CLOSED
FINITE CATEGORIES	GIRTH $\geqslant l$	
INFINITE (COUNTABLE) CATEGORIES		

SPARSE -DENSE HIERARCHY
G GRAPH, $r \geqslant 0$
H is a minor at depth r
If H is obtained from A SUBGRAPH OF G BY CONTRACTNG CONNECTED SUB GRAPHS WITH RADIUS sr.
sparse -dense hierarchy

$$
G G R A P H, r \geqslant 0
$$

H is a minor at depth r
If H is obtained from A SUBGRAPH OF G BY CONTRACTNG
CONNECTED SUBGRAPHS WITH RADIUS

$$
\leq r .
$$

$G \nabla n$

$$
\begin{aligned}
\varphi \nabla r= & \text { ALL MINORS AT } \\
& \text { DEPTH } r \text { OF ALL } \\
& \text { MEMBERS OF } \varphi
\end{aligned}
$$

$$
\varphi \subseteq \varrho \nabla_{0} \subseteq \mathscr{C} \nabla^{1} \subseteq \ldots
$$

$$
\varphi \subseteq \varphi \nabla_{0} \subseteq \varphi \nabla^{\wedge} \subseteq \ldots
$$

MINOR RESOLUTION

$$
\begin{aligned}
& \nabla_{n}(\varphi)=\sup \text { EDGE DENSITY } \\
& \text { OF GRAPHS IN } \varphi \nabla r \\
&=\operatorname{sur}\left\{\frac{|E|}{|V|} ;\left(V_{1} E\right) \in \varphi \nabla r\right\}
\end{aligned}
$$

$$
\varphi \subseteq \varphi \nabla_{0} \subseteq \varphi \nabla^{\wedge} \subseteq \ldots
$$

minor resolution

$$
\left.\begin{array}{rl}
\nabla_{n}(\varphi) & =\operatorname{BUP} \operatorname{EDCE} \operatorname{DENSITY} \\
\text { OF GRAPHS IN } \varphi \nabla r
\end{array}\right)
$$

$$
\nabla_{0}(\varphi) \leq d \Leftrightarrow \begin{aligned}
& \text { EVERY GRAPH } \\
& \text { IN } \varphi \text { IS } \\
& 2 d-\text { DEGENERTED }
\end{aligned}
$$

$$
\nabla_{0}(\varphi) \leqslant \nabla_{1}(\varphi) \leqslant \nabla_{2}(\varphi) \leq \ldots
$$

EXPANSION FUNCTION

$$
\nabla_{0}(\varphi) \leq \nabla_{1}(\varphi) \leq \nabla_{2}(\varphi) \leq \ldots
$$

EXPANSION FUNCTION
φ CLASS OF CUBIC GRAPHS EXPONENTIAL GROWTH

$$
\nabla_{0}(\varphi) \leq \nabla_{1}(\varphi) \leq \nabla_{2}(\varphi) \leq \ldots
$$

EXPANSION FUNCTION
e CLASS OF CUBIC GRAPHS EXPONENTAL GROWTH

DEF
φ has BOUNDED EXPANSION
IF $\nabla_{\pi}(e)$ is REAL FOR EVERY r.
φ is NOWHERE DENSE
if $\varphi \nabla r$ is a proper subclass (OF ALL GRAPHS)
φ is SOMEWHERE DENSE
OTHERWISE

Algorithms and Combinatorics 28

Jaroslav Nešetril Patrice Ossona de Mendez

Graphs, Structures, and Algorithms

	REPRESENTED BY	NOT REPRESENTED BY		
GROUPS	$\Delta \leq d$	PROPER MINOR CLOSED		
MONOIDS			\quad	GIRTH $\geqslant l$
:---:				

OBJECTS
A, B, \ldots
MORPHISMS $\quad \alpha, \beta, \ldots$

COMPOSITION
"IF CONSISTENT
11 THEN DEFINED
1_{A} IS MORPHISM

OBJECTS

$$
A_{1} B_{1} \ldots
$$

MORPHISMS $\quad \alpha, \beta, \ldots$

COMPOSITION "IF CONSISTENT THEN DEFINED
1_{A} Is MORPHISM

EXAMPLES

- SETS + MAPPINGS
- GRAPHS + HOMOMORPHISM
- GROUPS, MONOIDS (SINGLE OBJECT)
- POETS

CHARACTERISATION

THM (P.OSSONA DE MENDEZ, JN. 2016)
FOR A MONOTONNE CLASS OF GRAPHS

THE FOLLOWING ARE EQUIVALENT:

1. C is SOMEWHERE DENSE;
2. \int TOGETHER WITH ALL HOMOMORPHISMS REPRESENTS EVERY CATEGORY (IN, FINITE SETS; CONCRETE) THEORY OF

THM (P.OSSONA DE MENDEZ, JN. 2016)
FOR A MONOTONNE CLASS OF GRAPHS

THE FOLLOWING ARE EQUIVALENT:

1. φ is SOMEWHERE DENSE;
2. C TOGETHER WITH ALL HOMOMORPHISMS REPRESENTS EVERY CATEGORY (IN, FINITE SETS; CONCRETE) THEORY OF

PURELY COMBINATORIAL CHARACTE RIZATION
OF A DEEP ALGEBRAIC PROPERTY

- COUNTABLY MANY OBJECTS + FINITELY MANY MORPHISMS between any two op them

- COUNTABLY MANY OBJECTS + FINITELY MANY MORPHISMS between any two of them

- CONCRETE CATEGORY

representable as some sets $+$ Some mappings BETWEEN THEM
- COUNTABLY MANY OBJECTS + FINITELY MANY MORPHISMS between any two op them

- concrete category

III
representable as some sets $+$ Some mappings beTween them

THY (FREMD, VINAREK)
category is concrete
VF

IT SATISFIES ISBEL'S CONDITION

Proof
2. $\Rightarrow 1$.

CONSIDER FOLLOWING CATEGORY

2. $\Rightarrow 1$.

CONSIDER FOLLOWING CATEGORY

Y_{n} has embedding to φ

THIS EMBEDDING DEFINES ORDER OF SOME VERTICES OF A GRAPH IN e

III
FO ORDER PROPERTY FOR EVERY n

THIS EMBEDDING DEFINES ORDER OF SOME VERTICES OF A GRAPH IN e

III
FO ORDER PROPERTY FOR EVERY n (THERE EXISTS FO FORMULA ϕ :

$$
G F \phi\left(\bar{a}_{i}, \bar{b}_{0}\right) \Longleftrightarrow 1 \leqslant i<j \leqslant h
$$

TM (SHELAH ; ADLER,ADLER; ossonade mendez, n.)

For any monotonne class OF GRAPHS
a. ζ has ${ }^{\text {BOUNDED }}$ (STABILITY OF E)
2. C has bounded VC dimen SION;
3. φ is nowhere dense.
(MODEL THEORETIC PROOF)

