

 $\chi(G)$: the minimum number of colors needed to assign colors to a graph G

 $\chi(G) \ge 3$ (G: a triangulation)

-Triad coloring

G: a triangulation on a closed surface

$$\mathcal{T} = \{\{i, i+1, i+2\} \mid i \in \mathbb{Z} \downarrow n\}$$

 $c: V(G) \rightarrow \{1,...,n\}$ is called an *n***-triad** coloring if $\{c(u),c(v),c(w)\}$ belongs to \mathcal{T} for each face uvw of G.

-Triad coloring

G: a triangulation on a closed surface

$$\mathcal{T} = \{\{i, i+1, i+2\} \mid i \in \mathbb{Z} \downarrow n\}$$

 $c: V(G) \rightarrow \{1,...,n\}$ is called an *n***-triad** coloring if $\{c(u),c(v),c(w)\}$ belongs to \mathcal{T} for each face uvw of G.

- * *n*-triad colorable \Rightarrow *n*-colorable
- * 3-colorable \Rightarrow *n*-triad colorable

Main theorem

A triangulation G on the sphere or the projective plane is n-triad colorable for some $n \ge 5$ if and only if $\chi(G) = 3$.

 \Rightarrow

?

n=7

triad complex K(T)

n=7

triad space x(T)

X (T)

G(T)

$$\chi(G(T))=3$$

$$f \downarrow c \downarrow \# (\pi \downarrow 1 (F \uparrow 2)) = \{1\}$$

$$\pi \downarrow 1 (F12)$$

$$f \downarrow c \downarrow \#$$

 $\pi \downarrow 1 (X(T))$

$$f \downarrow c \downarrow \# (\pi \downarrow 1 (F \uparrow 2)) = \{1\}$$

$$\chi(G)=3$$

 $f \downarrow c$

$$\pi \downarrow 1 \ (F12)$$

$$f \downarrow c \downarrow \#$$

$$\pi \downarrow 1 (X(T))$$

$$f \downarrow c \downarrow \# (\pi \downarrow 1 (S \uparrow 2)) = \{1\}$$

$$f \downarrow c \downarrow \# (\pi \downarrow 1 (P \uparrow 2)) = \{1\}$$

$$\chi(G)=3$$

 $\pi \downarrow 1 (P12)$

 $f \downarrow c \downarrow \#$ $\cong \mathbb{Z} \downarrow 2$

 $\cong \mathbb{Z}$

Main theorem

A triangulation G on the sphere or the projective plane is n-triad colorable for some $n \ge 5$ if and only if $\chi(G) = 3$.

5-triad colorable, $\chi(G)=4$

Remarks

- * Any triangulation on the sphere is 4-triad colorable.
- * There are many triangulations on the projective plane which are *not* n-triad colorable for any $n \ge 3$.

Thank you for your attention!!

