Symmetries and Covers of Discrete Objects 2016 / Rydges Hotel, Queenstown, New Zealand / 14-19 February 2016

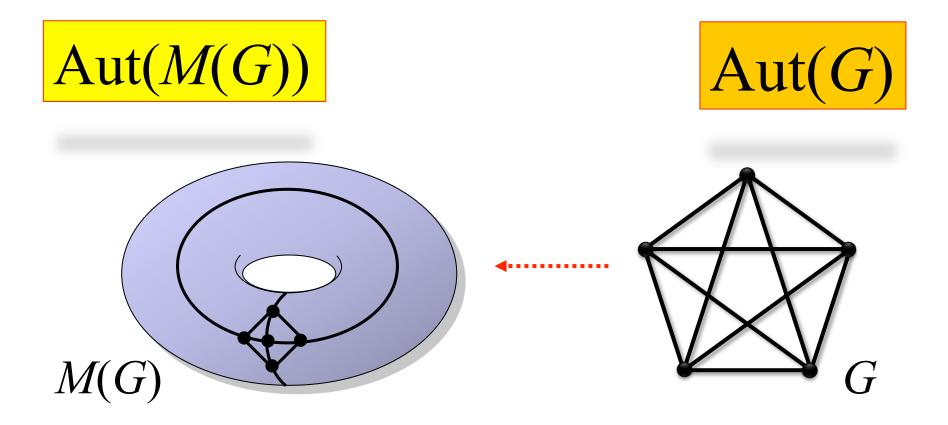
# Faithful embedding of graphs on closed surfaces

## Yokohama National University, Japan

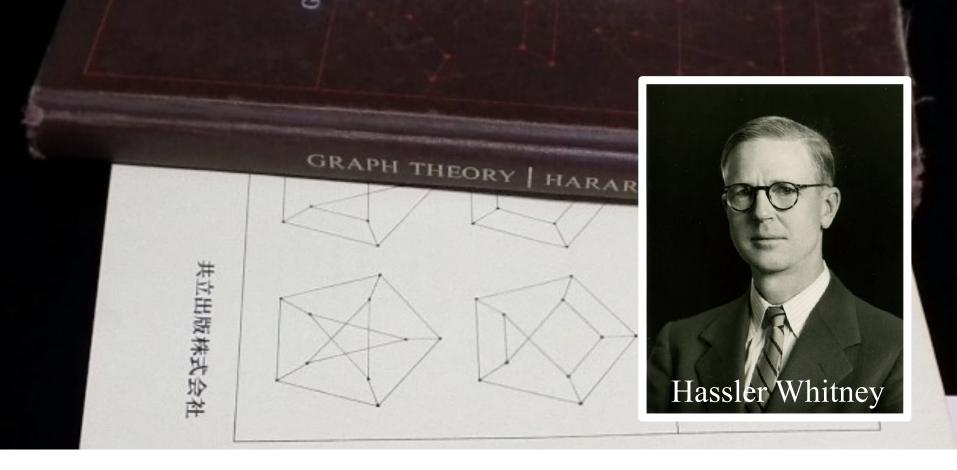
Seiya Negami

#### When and how the faithfulness was born

## Faithful embedding on surfaces



Aut(M(G)) = Aut(G) : a faithful embedding

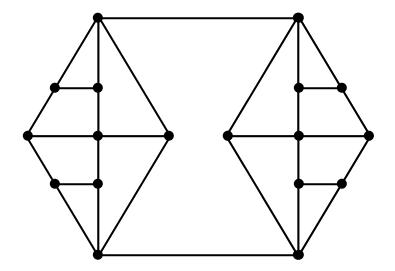


## **Theorem 11.5** Every 3-connected planar graph is uniquely embeddable on the sphere.

#### Hassler Whitney

[W13] A set of topological invariants for graphs, *Trans. Amer. Math. Soo.* 34 (1933), 231-235.[W11] Congruent graphs and the connectivity of graphs, *Amer. J. Math.* 54 (1932), 150-168.

## Re-embedding of planar graphs

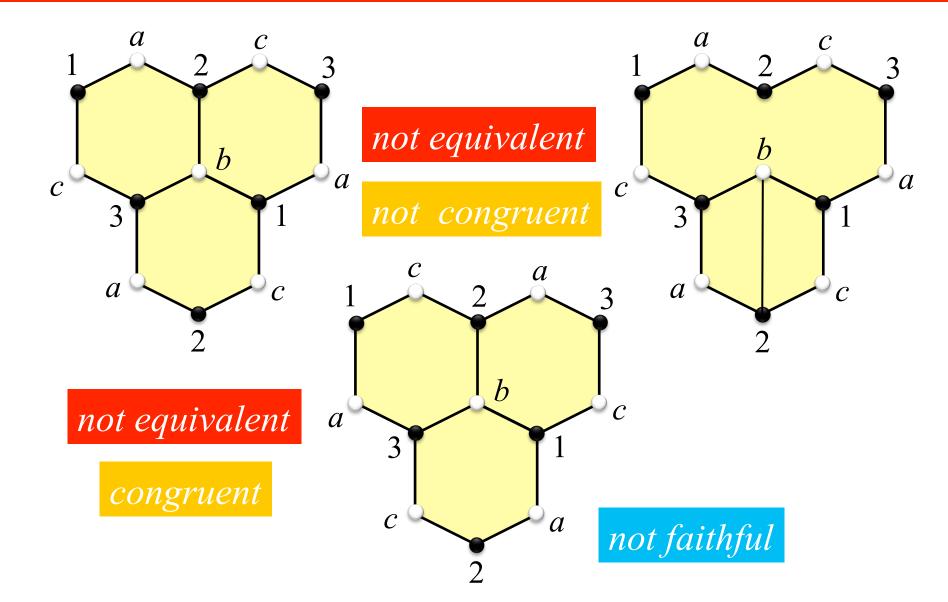


Rotation around two vertices

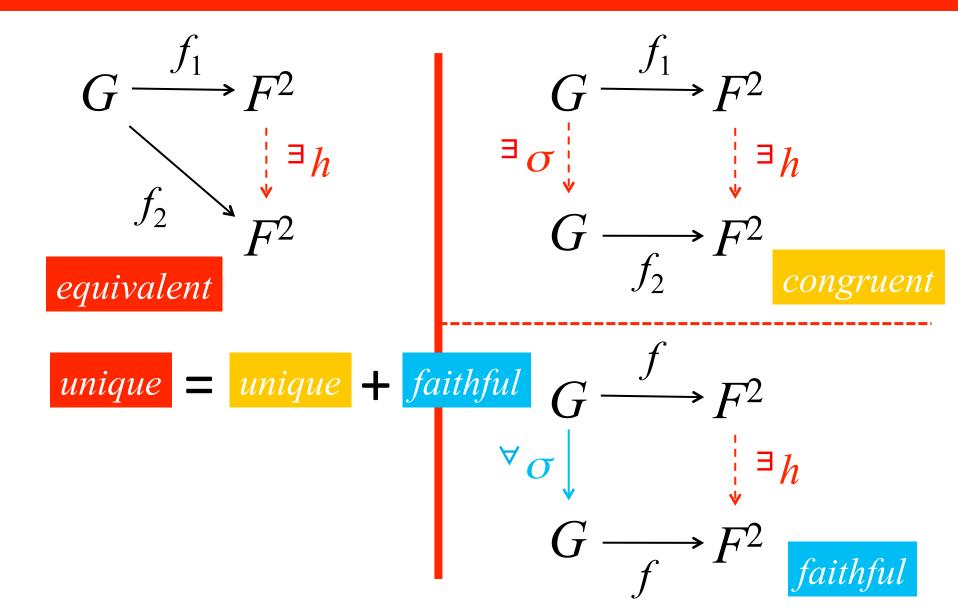
Arrangement of blocks

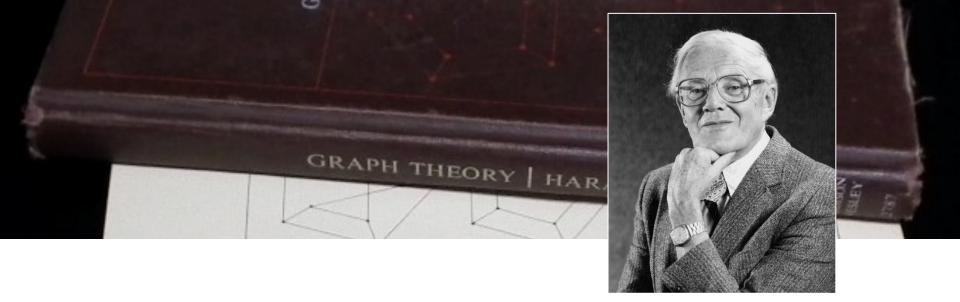
Every 3-connected planar graph is uniquely embedded on the sphere. (H.Whitney, 1932)

## Uniqueness of embedding...

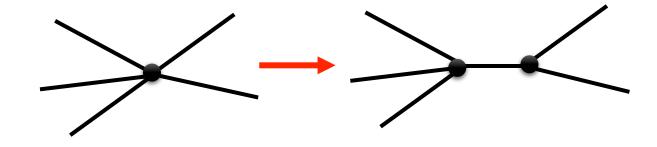


## Uniqueness of embedding...





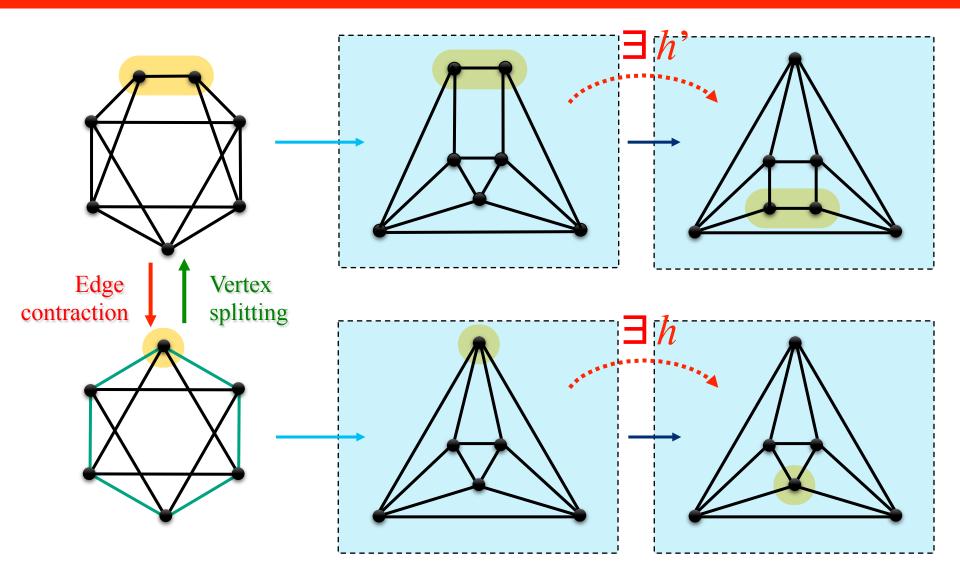
**Theorem 5.7** A graph *G* is 3-connected if and only if *G* is a wheel or can be obtained from a wheel by a sequence of edge-addition and 3-vertex-splitting



William T. Tutte

[T13] A theory of 3-connected graphs, Indag. Math. 23 (1961), 441-455.

## Re-embeddings and minors No.1

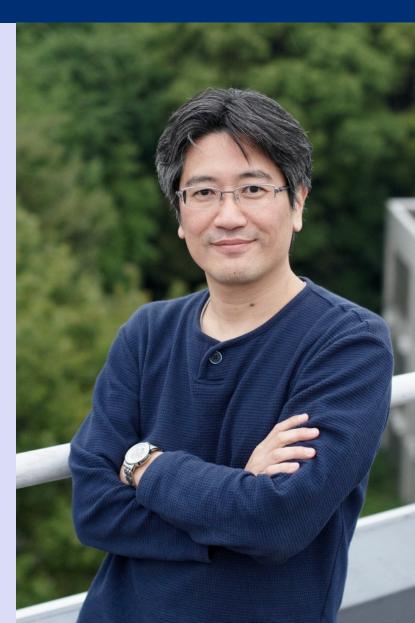


## My doctoral thesis

• Uniqueness and faithfulness of embedding of graphs on closed surfaces

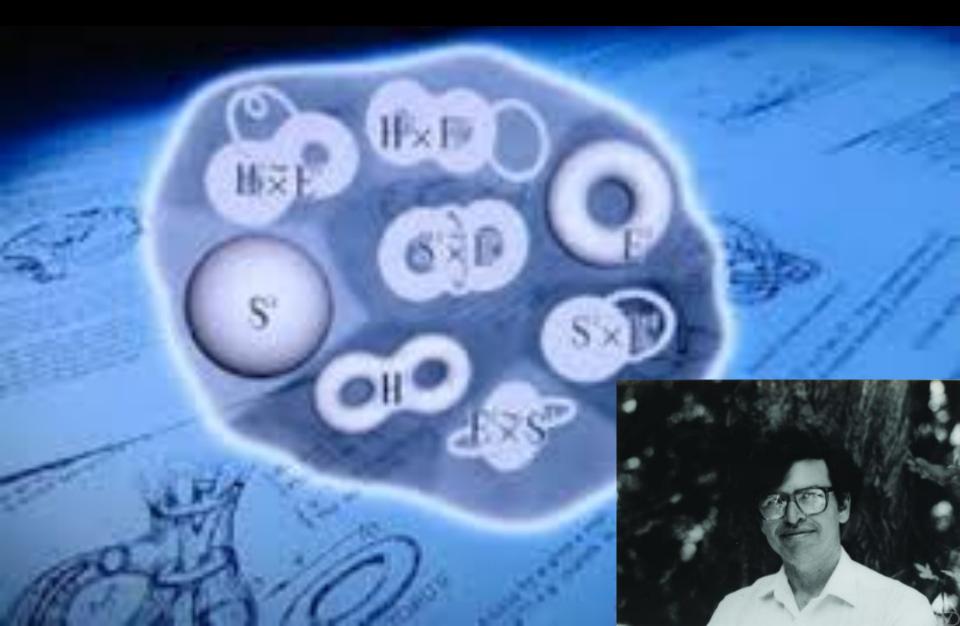
Tokyo Institute of Technology, 1985



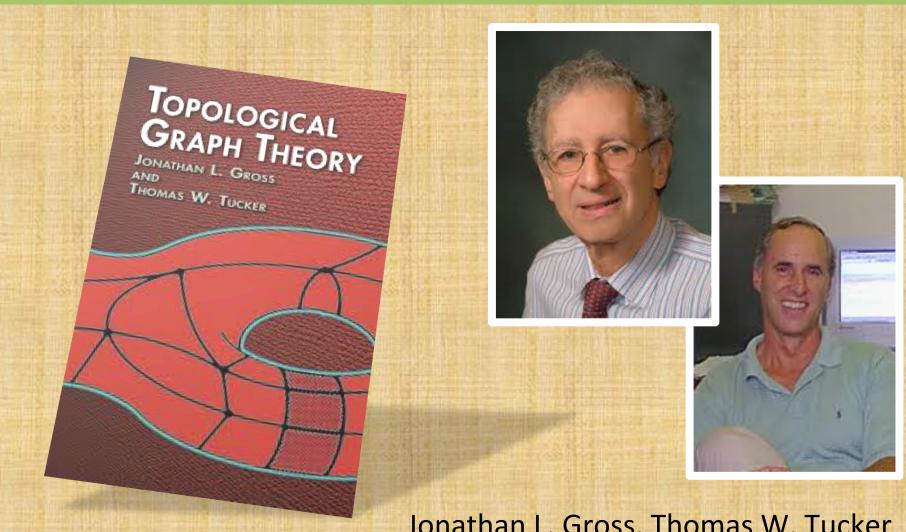


Opening a new world...

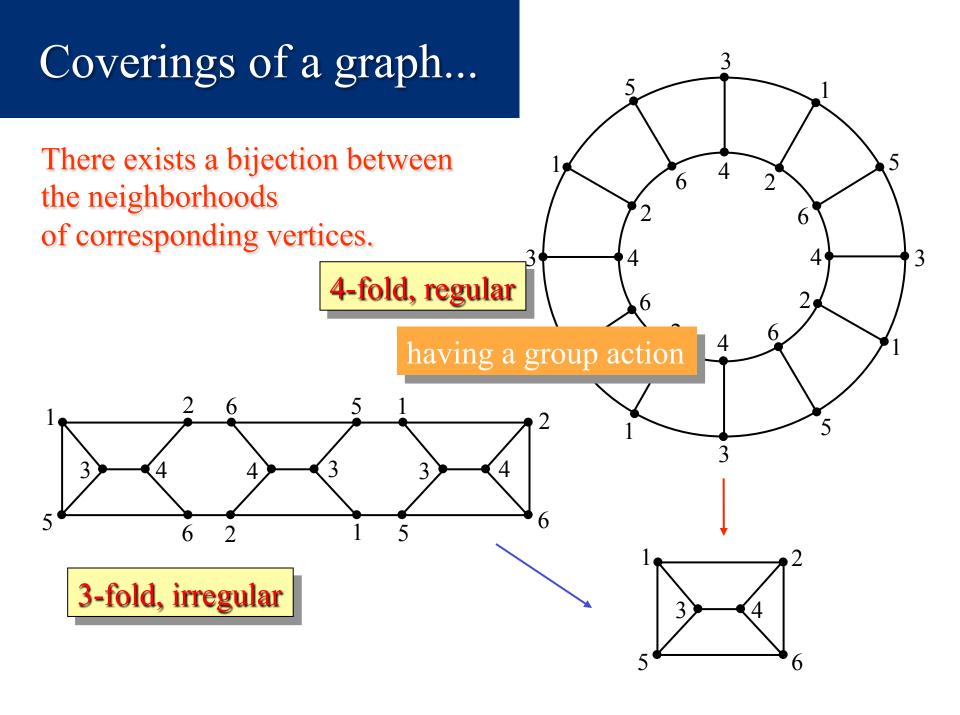
## Thurston's Lecture Note



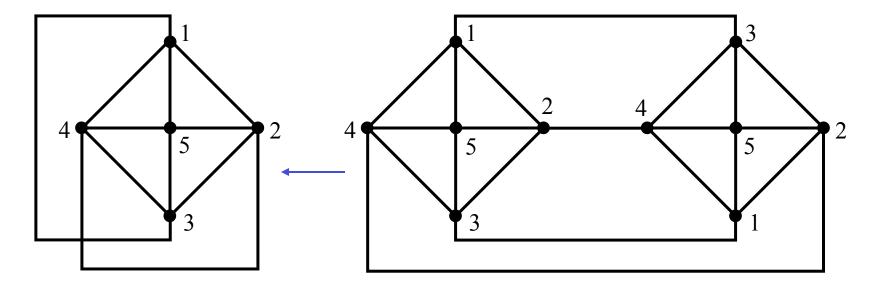
## Gross and Tucker's book



Jonathan L. Gross, Thomas W. Tucker Dover Publications, 1987



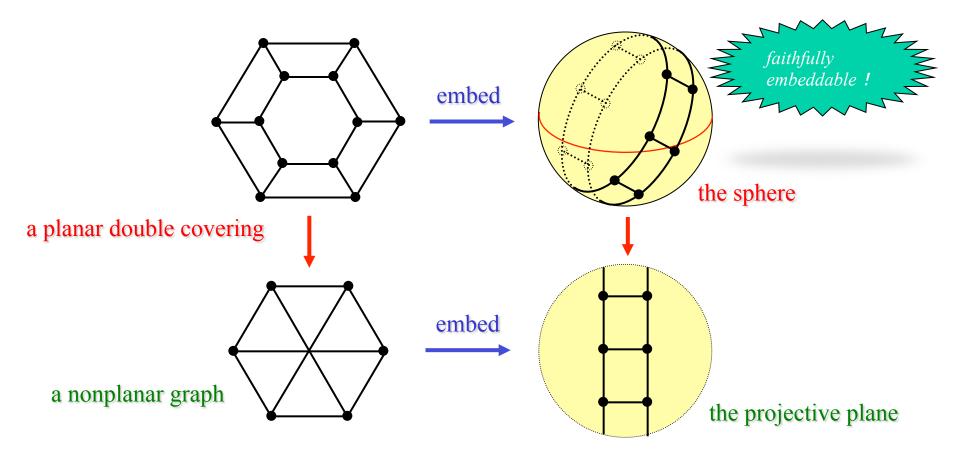
## Covering spaces and planarity



 $K_5$  a planar double covering of  $K_5$ 

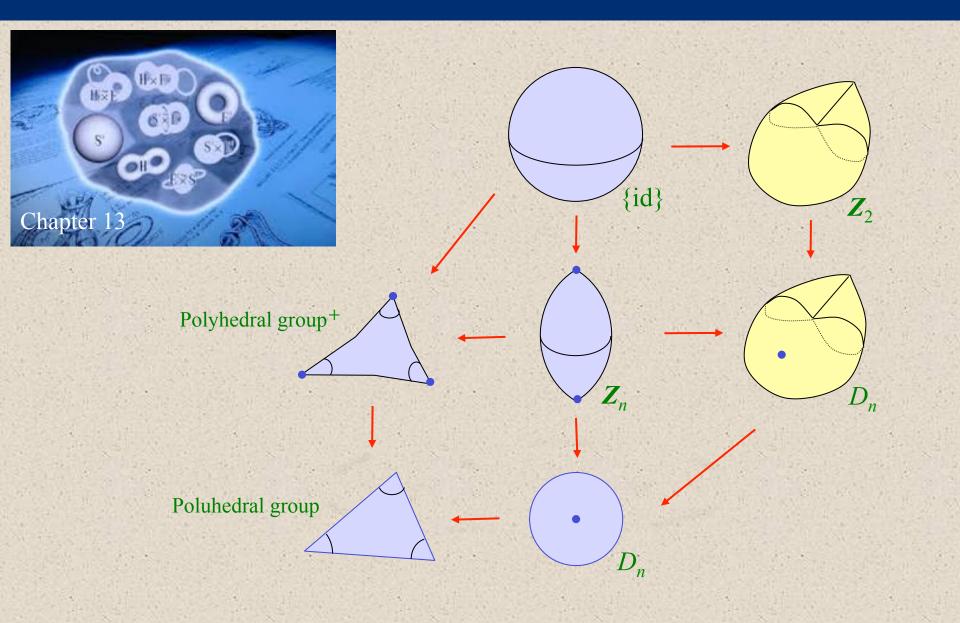
• What graph has a planar covering?

#### The projective plane and a double covering...



• There is a bijection between planar double coverings and embeddings to the projective plane of a 3-connected nonplanar graph.

## Elliptic 2-Orbifolds



## Proposal of "1-2-∞ Conjecture"

- A connected graph *G* can be embeddable on the projective plane if and only if *G* has a <u>finite</u> planar regular covering.
- Can we omit "regular"?

 $\Rightarrow$  1-2- $\infty$  conjecture

S. Negami, The spherical genus and virtually planar graphs, *Discrete Math.* 70 (1988), 159-168.

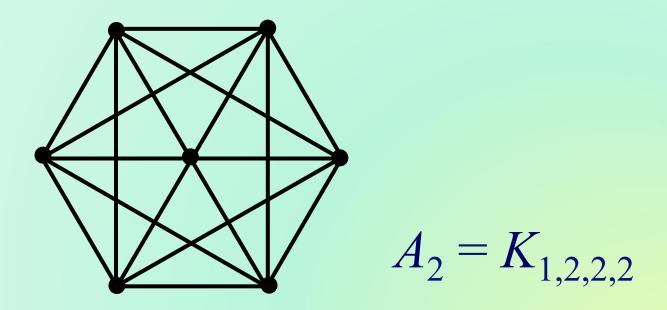
## Planar Cover Conjecture (Negami, 1986)

• A connected graph *G* can be embedded on the projective plane if and only if *G* has a finite planar covering.

• Necessity is clear, but sufficiency is still open.

S. Negami, The spherical genus and virtually planar graphs, *Discrete Math.* 70 (1988), 159-168.

#### Last monster...



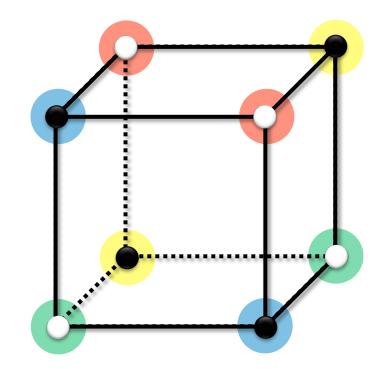
• If this graph does not have any finite planar covering, then Planar Cover Conjecture is true.

#### Harvest!

## Distinguishing chromatic numbers...

- How many colors do we need to destroy the symmetry of a given graph completely?
  - \$\chi\_D(G)\$
    Distinguishing chromatic number of colors
    the minimum number of colors in distinguishing colorings.

$$\chi_D(Q_3) = 4$$



#### A distinguishing 4-coloring

## Graphs on closed surfaces

For any triangulation G on a closed surface, Negami  $\chi_D(G) \leq O(g)$ 



• For any polyhedral map M(G) on a closed surface,  $\chi_D(M(G)) \le \chi(G) + 2$ Aut(M(G)) unless G is isomorphic to  $K_{n,n,n}$  for n=2,3,4,5.

2012

• For any polyhedral bipartite map M(G) on a closed surface,  $\chi_D(M(G)) \leq 3 \quad \text{if } |V(G)| > 20.$ Negami + Tucker 2013 +

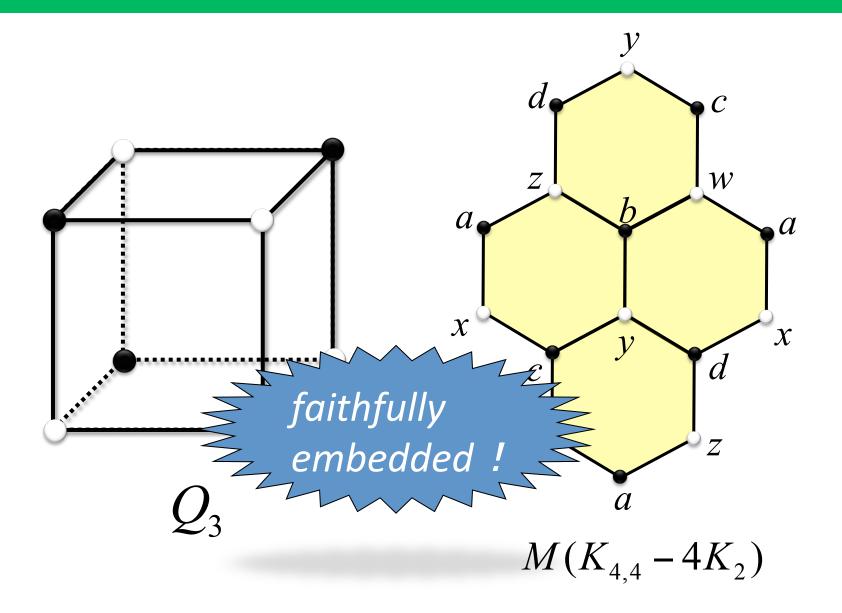
#### Distinguishing coloring on 3-regular maps

- **Theorem** Any 3-regular map on a closed surface is nearly distinguishing 3-colorable unless it is isomorphic to one of the following three:
  - The cube  $Q_3$  on the sphere
  - $-K_{3,3}$  on the torus with three hexagonal faces
  - $-K_{4,4} 4K_2$  on the torus with four hexagonal faces

#### Seiya Negami

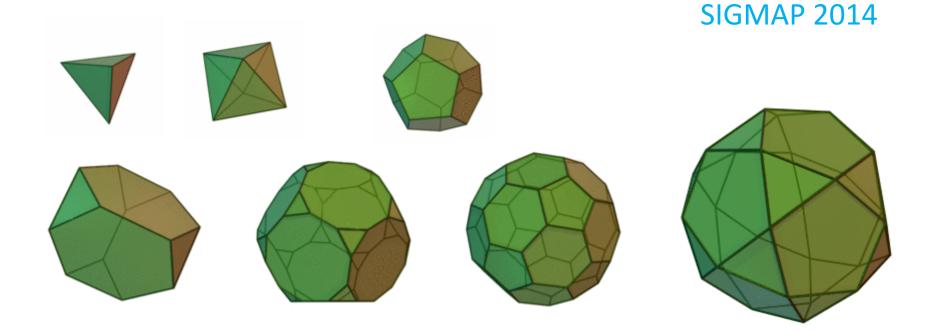
3-Regular maps on closed surfaces are nearly distinguishing 3-colorable with few exceptions, Graph & *Combin*. (2015).

## Encountered this...



## Faithful embedding of planar graphs

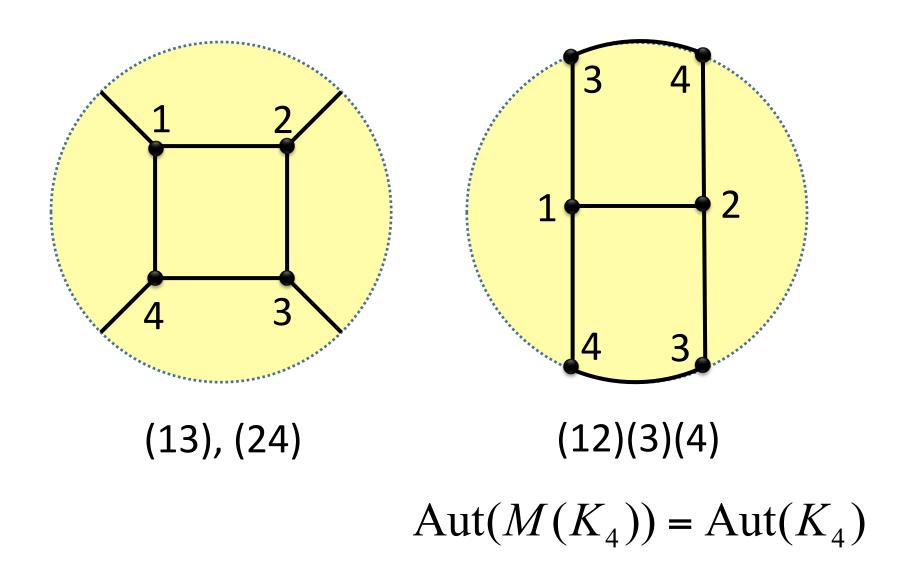
• **Theorem** Any 3-connected planar graph can be embedded faithfully on a suitable orientable closed surface other than the sphere with few exceptions.



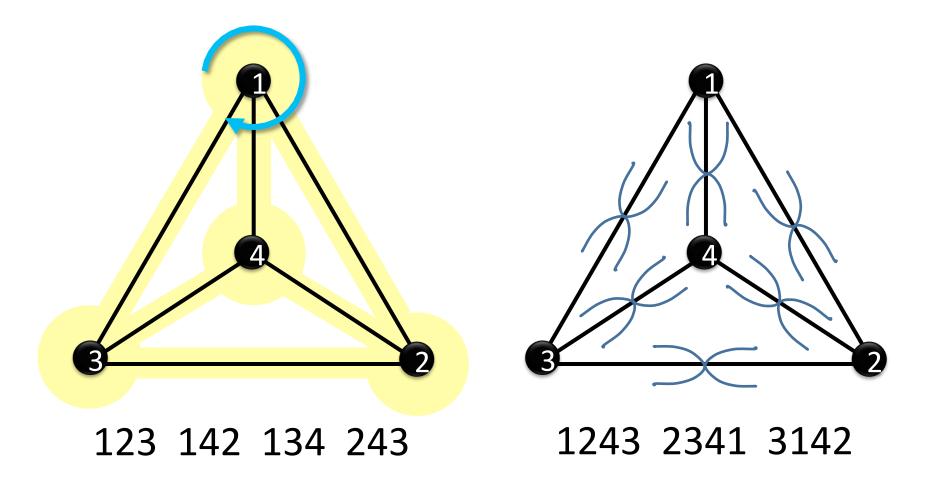
## Faithful embedding of planar graphs

- **Theorem** Any 3-connected planar graph can be embedded faithfully on a suitable orientable closed surface other than the sphere unless it is one of the followings:
  - The tetrahedron
  - The octahedron
  - The dodecahedron
  - The truncated tetrahedron
  - The truncated dodecahedron
  - The truncated icosahedron
  - The icosidodecahedron

### The tetrahedron on the projective plane

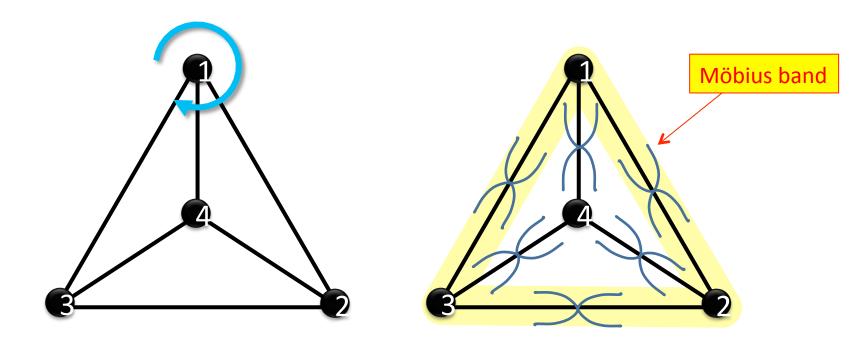


## Petri dual



## Non-bipartitel graphs

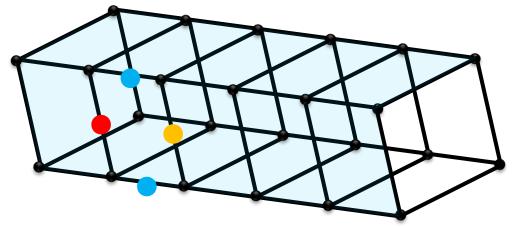
• Any non-bipartite 3-connected planar graph can be embedded faithfully on a suitable nonorientable closed surface.



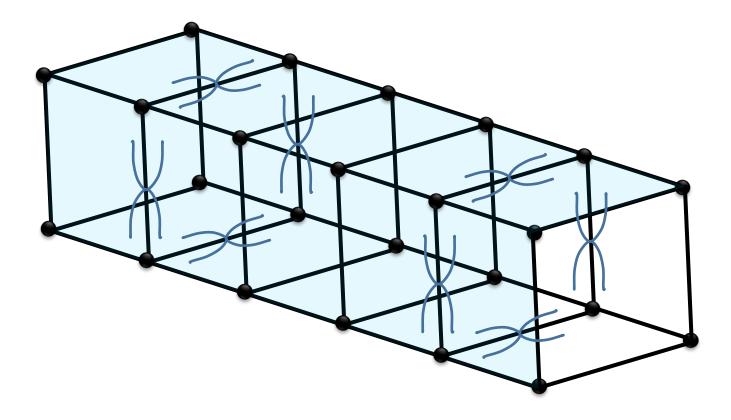
#### Faithful embeddings on nonorientable surfaces

• **Theorem** If a 3-connected planar graph *G* has a face such that an odd number of edges along its boundary cycle are equivalent, then *G* can be faithfully embedded on a suitable nonorientable closed surface.

TGT26, 2014



#### Examples having faithful embeddings



## For further studies

- Classify all 3-connected planar graphs which have **no** faithful embedding on nonorientable closed surfaces.
- Find a method to determine the genera of closed surfaces where a given 3-connected planar graph can be faithfully embedded.
- Faithful genus...

Thank you for your attention!