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Open University and
Slovak University of Technology

SCDO Queenstown, 18th February 2016
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Instead of an introduction: The five Platonic maps M

Here, Aut+(M) and Aut(M) act regularly on arcs and flags, respectively.

Such maps (cellular embeddings of connected graphs) on arbitrary surfaces
are called orientably-regular and regular (generalising the Platonic maps).
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Orientably-regular maps - an introduction

An orientable map M is orientably-regular if Aut+(M) is a transitive
(and hence regular) permutation group on the arc set of M.

If r and s are rotations of M about the centre of a face and about an
incident vertex, then G = Aut+(M) has a presentation of the form

G = 〈r, s | r` = sm = (rs)2 = . . . = 1〉 .

The group G is then a quotient of the triangle group

T`,m = 〈R,S | R` = Sm = (RS)2 = 1〉 ,

i.e., G = T`,m/K for a torsion-free K / T`,m; equivalently, M = U`,m/K,
where U`,m is an (`,m)-tessellation of a simply connected surface.

Conversely, given any epimorphism from T`,m onto a finite group G with
torsion-free kernel, the corresponding orientably-regular map of type (`,m)
can be constructed using (right) cosets of the images of 〈R〉, 〈S〉 and
〈RS〉 as faces, vertices and edges. (Works with cosets of 〈r〉, 〈s〉, 〈rs〉.)
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Example of an orientably-regular map: K5 on a torus
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• Presentation: Aut+(M) = 〈r, s | r4 = s4 = (rs)2 = r2s2rs−1 = 1〉

• This map is chiral (no reflection).

• Algebraic theory of reflexible maps and non-orientable regular maps: ×

Jozef Širáň Open University and Slovak University of Technology SCDO Queenstown, 18th February 2016Regular maps with a given automorphism group, and with emphasis on twisted linear groups4 / 15



Example of an orientably-regular map: K5 on a torus
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• Presentation: Aut+(M) = 〈r, s | r4 = s4 = (rs)2 = r2s2rs−1 = 1〉

• This map is chiral (no reflection).

• Algebraic theory of reflexible maps and non-orientable regular maps: ×
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Example of an orientably-regular map: K5 on a torus
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• Presentation: Aut+(M) = 〈r, s | r4 = s4 = (rs)2 = r2s2rs−1 = 1〉

• This map is chiral (no reflection).

• Algebraic theory of reflexible maps and non-orientable regular maps: ×
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• Presentation: Aut+(M) = 〈r, s | r4 = s4 = (rs)2 = r2s2rs−1 = 1〉

• This map is chiral (no reflection).

• Algebraic theory of reflexible maps and non-orientable regular maps: ×
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Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

orientably-regular maps of type (`,m);

group presentations 〈r, s | r` = sm = (rs)2 = . . . = 1〉;
torsion-free normal subgroups of triangle groups T`,m.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be uniformised by representing it in the
form S ∼= U/F for some Fuchsian group F < PSL(2, R). But S can also
be defined by a complex polynomial eq’n P (x, y) = 0 as a many-valued
function y = f(x). We have a tower of branched coverings: U → S → C.

[Weil 1950, Belyj 1972]: S is definable by a P with algebraic coefficients
if and only if S = U`,m/K for some finite-index subgroup K of some T`,m
(loosely speaking, iff the complex structure on S “comes from a map”).
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Jozef Širáň Open University and Slovak University of Technology SCDO Queenstown, 18th February 2016Regular maps with a given automorphism group, and with emphasis on twisted linear groups5 / 15



Orientably-regular maps and exciting mathematics

Up to isomorphism, 1-1 correspondence between:

orientably-regular maps of type (`,m);

group presentations 〈r, s | r` = sm = (rs)2 = . . . = 1〉;
torsion-free normal subgroups of triangle groups T`,m.

Maps, Riemann surfaces, and Galois theory:

A compact Riemann surface S can be uniformised by representing it in the
form S ∼= U/F for some Fuchsian group F < PSL(2, R). But S can also
be defined by a complex polynomial eq’n P (x, y) = 0 as a many-valued
function y = f(x). We have a tower of branched coverings: U → S → C.

[Weil 1950, Belyj 1972]: S is definable by a P with algebraic coefficients
if and only if S = U`,m/K for some finite-index subgroup K of some T`,m
(loosely speaking, iff the complex structure on S “comes from a map”).

This way the absolute Galois group acts on maps! [Grothendieck 1981]

Faithful on orientably-regular maps! [González-Diez, Jaikin-Zapirain 2013]
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Classification of (orientably-) regular maps

By underlying graphs:

[Gardiner, Nedela, Škoviera, Š 1999] A connected regular graph of degree
≥ 3 underlies an orientably-regular map if and only if its automorphism
group contains a subgroup regular on arcs, with cyclic vertex stabilisers.

By carrier surfaces:

If G = Aut+(M) for an orientably-regular map of type (`,m) on a surface
of genus g ≥ 2, then, by Euler’s fomula, |G|(`m− 2`− 2m) = 4`m(g− 1).
Extremes: g − 1 divides |G| and (g − 1, |G|) = 1. Hard from here on...

By automorphism groups:

If G = 〈r, s〉 with rs of order 2, then one needs to find all presentations
G = 〈r, s; r` = sm = (rs)2 = . . . = 1〉 up to equivalence within Aut(G);
the triples (G, r, s) and (G, r′, s′) give rise to isomorphic orientably-regular
maps if and only if there is an automorphism of G s.t. (r, s) 7→ (r′, s′).
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Classification of regular maps by automorphism groups

regular maps with nilpotent groups of class ≤ 3; orientably-regular
maps with simple graphs on nilpotent groups of class c are quotients
of a single such map [Du, Conder, Malnič, Nedela, Škoviera, ...]

regular maps with almost-Sylow-cyclic automorphism groups
(every odd-order Sylow subgroup is cyclic and the even-order one
has a cyclic subgroup of index 2) [Conder, Potočnik and Š 2010]
– in the solvable case independent of [Zassenhaus 1936]

orientably regular maps with automorphism groups isomorphic to
PSL(2, q) and PGL(2, q) [McBeath 1967, Sah 1969]

non-orientable regular maps with automorphism groups isomorphic to
PSL(2, q) and PGL(2, q) [Conder, Potočnik and Š 2008]

Suzuki simple groups for maps of type (4, 5) [Jones 1993]

Ree simple groups for maps of type (3, 7), (3, 9) and (3, p) for primes
p ≡ −1 mod 12 [Jones 1994]
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Twisted linear fractional groups

F – a field, SF and NF – non-zero squares and non-squares. The groups
PSL(2, F ) and PGL(2, F ) consist of permutations of F ∪ {∞} given by

z 7→ az + b

cz + d

if ad− bc ∈ SF and ad− bc ∈ SF ∪NF , respectively.

If F = GF(q2) for an odd prime power q, and if σ : x 7→ xq is the
automorphism of F of order 2, the twisted linear fractional group M(q2)
consists of the permutations of F ∪ {∞} defined by

z 7→ az + b

cz + d
if ad−bc ∈ SF and z 7→ azσ + b

czσ + d
if ad−bc ∈ NF .

By a major result of Zassenhaus (1936), the groups PGL(2, F ) for an
arbitrary finite field F , and M(q2) for fields of order q2 for an odd prime
power q, are precisely the finite, sharply 3-transitive permutation groups.
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Jozef Širáň Open University and Slovak University of Technology SCDO Queenstown, 18th February 2016Regular maps with a given automorphism group, and with emphasis on twisted linear groups8 / 15



Twisted linear fractional groups

F – a field, SF and NF – non-zero squares and non-squares. The groups
PSL(2, F ) and PGL(2, F ) consist of permutations of F ∪ {∞} given by

z 7→ az + b

cz + d

if ad− bc ∈ SF and ad− bc ∈ SF ∪NF , respectively.

If F = GF(q2) for an odd prime power q, and if σ : x 7→ xq is the
automorphism of F of order 2, the twisted linear fractional group M(q2)
consists of the permutations of F ∪ {∞} defined by

z 7→ az + b

cz + d
if ad−bc ∈ SF and z 7→ azσ + b

czσ + d
if ad−bc ∈ NF .

By a major result of Zassenhaus (1936), the groups PGL(2, F ) for an
arbitrary finite field F , and M(q2) for fields of order q2 for an odd prime
power q, are precisely the finite, sharply 3-transitive permutation groups.
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Standard form of (twisted) elements

Notation: G = M(q2), G = M(q2)〈σ〉, F = GF(q2) = GF(p2f ),
F2e = GF(p2e). Matrices: dia(u, v), off(u, v). Encoding elements of G:(

z 7→ az + b

cz + d
, ad−bc ∈ SF

)
7→ [A, 0]; A ∈ PSL(2, F )

(
z 7→ azσ + b

czσ + d
, ad−bc ∈ NF

)
7→ [A, 1]; A ∈ PGL(2, F )\PSL(2, F )

• Every element of the form [A, 1] ∈ G is conjugate in G to [B, 1] with
B = dia(λ, 1) or B = off(λ, 1) for some λ ∈ NF .

• If, in addition, [AAσ, 0] = [C, 0] for some C∈PSL(2, p2e) with f/e odd,
then [B, 1] = [P, 0]−1[A, 1][P, 0] for some P∈PGL(2, p2e), and λλσ ∈ F2e
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Jozef Širáň Open University and Slovak University of Technology SCDO Queenstown, 18th February 2016Regular maps with a given automorphism group, and with emphasis on twisted linear groups9 / 15



Standard form of (twisted) elements

Notation: G = M(q2), G = M(q2)〈σ〉, F = GF(q2) = GF(p2f ),
F2e = GF(p2e). Matrices: dia(u, v), off(u, v). Encoding elements of G:(

z 7→ az + b

cz + d
, ad−bc ∈ SF

)
7→ [A, 0]; A ∈ PSL(2, F )

(
z 7→ azσ + b

czσ + d
, ad−bc ∈ NF

)
7→ [A, 1]; A ∈ PGL(2, F )\PSL(2, F )

• Every element of the form [A, 1] ∈ G is conjugate in G to [B, 1] with
B = dia(λ, 1) or B = off(λ, 1) for some λ ∈ NF .

• If, in addition, [AAσ, 0] = [C, 0] for some C∈PSL(2, p2e) with f/e odd,
then [B, 1] = [P, 0]−1[A, 1][P, 0] for some P∈PGL(2, p2e), and λλσ ∈ F2e

or λ/λσ ∈ F2e, depending on whether B is equal to dia(λ, 1) or off(λ, 1).

• Every element of G not in PSL(2, q2) has order a multiple of 4.
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Conjugacy in twisted linear groups

• Let ξ be a primitive element of F and let [A, 1] be an element of G.
Then, exactly one of the following two cases occur:

1. There exists exactly one odd i ∈ {1, 2, . . . , (q − 1)/2} such that [A, 1]
is conjugate in G to [B, 1] with B = dia(ξi, 1); the order of [A, 1] in
G is then 2(q − 1)/ gcd{q − 1, i}.

2. There exists exactly one odd i ∈ {1, 2, . . . , (q + 1)/2} such that [A, 1]
is conjugate in G to [B, 1] with B = off(ξi, 1), and the order of [A, 1]
in G is 2(q + 1)/ gcd{q + 1, i}.

Stabilisers of twisted elements - only one case presented here:

• The stabiliser of [B, 1] for B = dia(λ, 1), λ ∈ NF , in G is isomorphic
to Z2(q−1) generated by (conjugation by) [P, 1] for P = dia(µλ, 1) with a

suitable (q − 1)th root of unity µ, except when λ is a (q + 1)th root of −1
and q ≡ −1 mod 4; then the stabiliser is isomorphic to NG(D2(q−1)).
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Generating pairs of twisted elements

Recall: Enumeration of orientably-regular maps M, Aut+(M) ∼= G, 7→
enumeration of triples (G, r, s), G = 〈r, s; r` = sm = (rs)2 = . . . = 1〉,
up to conjugation in Aut(G), that is, by considering triples (G, r, s) and
(G, r′, s′) equivalent if there is an automorphism of G: (r, s) 7→ (r′, s′).

If M(p2f ) = G = 〈r, s; r` = sm = (rs)2 = . . . = 1〉, then r = [A, 1] and
s = [B, 1]; wlog B in standard form (and with conditions imposed on A).

There are 3 obvious instances of singular pairs [A, 1], [B, 1] that do not
generate G or a twisted subgroup of G isomorphic to M(p2e) for f/e odd:

(i) both [A, 1] and [B, 1] have order 4,

(ii) B = dia(λ, 1) and A is an upper- or a lower-triangular matrix,

(iii) B = off(λ, 1) and A is a diagonal matrix.

• If H is a subgroup of G generated by a non-singular pair ([A, 1], [B, 1]),
then H ∼= M(p2e) for some divisor e of f with f/e odd.
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Intermediate results towards enumeration, q = pf

• # G-orbits of non-singular pairs in G = M(q2) is (q2 − 1)(q2 − 2)/8.

• For each positive divisor e of f with f/e odd, the # of G-orbits of
non-singular pairs generating a subgroup of G isomorphic to G2e

∼= M(p2e)
is equal to the number orb(e) of G2e-orbits of such non-singular pairs.

• All subgroups G2e
∼= M(p2e) < G = M(p2f ) are conjugate in G.

• Let f = 2no with o odd and let e = 2nd for a divisor d of o. Letting
h(x) = (p2x − 1)(p2x − 2)/8 and summing up the above facts, we have∑′

e orb(e) = h(f) , or
∑

d|o orb(2nd) = h(2no) .

• Applying Möbius inversion we obtain

orb(f) = orb(2no) =
∑

d|o µ(o/d)h(2nd) .

• Final step: If a non-singular pair ([A, 1], [B, 1]) generates G and gives
rise to an orbit O under conjugation in G, then the action of the group
Aut(M(q2)) ∼= PΓL(2, q2) fuses the f orbits Op

j
for j ∈ {0, 1, . . . , f−1}.
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Jozef Širáň Open University and Slovak University of Technology SCDO Queenstown, 18th February 2016Regular maps with a given automorphism group, and with emphasis on twisted linear groups12 / 15



Intermediate results towards enumeration, q = pf

• # G-orbits of non-singular pairs in G = M(q2) is (q2 − 1)(q2 − 2)/8.

• For each positive divisor e of f with f/e odd, the # of G-orbits of
non-singular pairs generating a subgroup of G isomorphic to G2e

∼= M(p2e)
is equal to the number orb(e) of G2e-orbits of such non-singular pairs.

• All subgroups G2e
∼= M(p2e) < G = M(p2f ) are conjugate in G.

• Let f = 2no with o odd and let e = 2nd for a divisor d of o. Letting
h(x) = (p2x − 1)(p2x − 2)/8 and summing up the above facts, we have∑′

e orb(e) = h(f) , or
∑

d|o orb(2nd) = h(2no) .
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Enumeration results

Theorem. Let q = pf , f = 2no; p, o odd. The number of orientably-regular
maps M with Aut+(M) ∼= M(q2) is, up to isomorphism, equal to

1

f

∑
d|o

µ(o/d)h(2nd) ,

where h(x) = (p2x − 1)(p2x − 2)/8 and µ is the Möbius function.

A group-theoretic interpretation: Counting generating pairs (r, s) of
G = M(q2) such that (rs)2 = 1, up to conjugacy in Aut(G).

Theorem. The number of reflexible maps M with Aut+(M) ∼= M(q2) is

1

f

∑
d|o

µ(o/d)k(2nd) ,

where k(x) = (p2x − 1)(3px − 2)/8 and µ is the Möbius function.
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A group-theoretic interpretation: Counting generating pairs (r, s) of
G = M(q2) such that (rs)2 = 1, up to conjugacy in Aut(G).

Theorem. The number of reflexible maps M with Aut+(M) ∼= M(q2) is

1

f

∑
d|o

µ(o/d)k(2nd) ,

where k(x) = (p2x − 1)(3px − 2)/8 and µ is the Möbius function.
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Remarks

The results are strikingly different from those for the groups PGL(2, q):

all the orientably-regular maps for PGL(2, q) are reflexible, while this
is not the case for M(q2);

groups PGL(2, q) are also automorphism groups of non-orientable
regular maps, while the groups M(q2) are not;

for any even `,m ≥ 4 not both equal to 4 there are orientably-regular
maps of type (`,m) with automorphism group PGL(2, q) for infinitely
many values of q, while for infinitely many such pairs (`,m) there are
no orientably-regular maps for M(q2) of that type for any q.

Proposition. If `,m ≡ 0 (mod 8) and ` 6≡ m (mod 16) then there is no
orientably-regular map of type (`,m) with automorphism group isomorphic
to M(q2) for any q.
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Future work: Characters

Good progress towards determining the character table of M(q2); if known:

Frobenius 1896: For i ∈ {1, 2, . . . , k} let Ci be conjugacy classes in a finite
group G. Then, the number of solutions (x1, x2, . . . , xk) of the equation
x1x2 · · ·xk = 1 with xi ∈ Ci is equal to

|C1| · · · |Ck|
|G|

∑
χ

χ(x1) · · ·χ(xk)

χ(1)k−2

where χ ranges over the irreducible complex characters of G.

Letting x1 = r, x2 = s and x3 = (rs)−1, presentations of G = M(q2)
determining our orientably-regular maps of type (`,m) have the form
G = 〈x1, x2, x3; x`1 = xm2 = x23 = . . . = 1〉. Our knowledge of triples
generating proper subgroups of G and Möbius inversion would then give
a refined enumeration of maps of given type. (Recall: ∞ types missing!)

(: THANK YOU :)
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