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Graphical Regular Representations: Review

Basic problem:

given a (finite) permutation group G on set X ,
give X a structure so that G = Aut(X ).
For graph theory, obvious choice is X = V (Γ), the vertex set of
graph Γ.
Suppose we wanted a a graphical regular representation (GRR),
where G acts regularly (transitive, free) on V (Γ). That makes Γ a
Cayley graph C (G ,S), with inverse-closed connection set S
Difficulty: Any group automorphism of G leaving the connection
set S invariant induces an extra graph automorphism fixing the
identity.
And maybe there are other extra graph automorphism not induced
by such group autos.So worry about extra “group” autos and extra
“graph” autos.
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History of the GRR problem

Started around 1970 and finished in 1981: Imrich, Watkins, Babai,
Godsil et al.

Two observations:
1) no GRR for abelian groups other than elem 2-groups: inversion
x → x−1 is always an extra group auto
2) also no GRR for generalized dicyclic groups G (has abelian
index two subgroup A and if x 6∈ A, then x4 = 1 and xax−1 = a−1

for all a ∈ A) Here f (a) = a, a ∈ A and f (x) = x−1, x 6∈ A is an
extra group auto (easy to prove).

But that is it except for a little small noise.
Theorem(finished Godsil 1981) The only finite groups failing to
have a GRR are abelian (not elem 2-group), generalized dicyclic, or
13 groups all of order at most 32.
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On the small noise

Babai’s Conjecture: Almost all Cayley graphs are GRRs.

Babai-Godsil (1982): For odd order nilpotent groups G , as |G |
gets large, proportion of generating sets X with C (G ,X ) a GRR
approaches 1.

If look at directed graphs, where automorphisms respect direction,
then
Theorem(Babai 1980) The only groups failing to have a DGRR
are C k

2 , k = 2, 3, 4 and C3 × C3 and quaternions.
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Frobenius groups
After regular group actions where point stabilizer is trivial, next
smallest is where point stabilizer nontrivial, but two-point stabilizer
is trivial.

A permutation group G on {1, 2, . . . n} is a Frobenius group if it is
transitive, not regular, and only the identity fixes 2 points (point
stabilizers intersect only in id).
If H is a point stabilizer (|H| 6= 1 since not regular), then
|G | = n|H| but union of all point stabilizers is n|H| − (n − 1), so
there are (n − 1) elements of A that fix nothing. Let K be the set
of those elements together with id .
We call H the complement and K the kernel of the Frobenius
group.

Observations
1) K closed under conjugation
2) H acts freely on K − {id} by conjugation (hkh−1 = k implies
khk−1 = h so H and kHk−1 intersect).
3) |H| divides |K | − 1.
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Frobenius’s Theorem. Thompson’s Theorem

Theorem (Frobenius 1901) The kernel is a subgroup of A.

Thus a Frobenius group is algebraically G = K o H, where H
injects to a subgroup of Aut(K ) that acts freely on K − {id}.
Moreover, K is the Fitting subgroup of G , so it is uniquely
determined.
Thus when we are given a Frobenius group G we simply write
G = HK .

The condition that H act freely on K is highly restrictive on K and
H:
Theorem (Thompson 1959, thesis) The kernel K is nilpotent.
And on H:
Theorem (Burnside) All Sylow p-subgroups of H are cyclic or
possibly for p = 2 generalized quaternion.
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Model example

The Example Let F be a (finite) field. Then the group of affine
transformations k → rk + b is a Frobenius group with K = F+ and
H = K ∗ or restrict to subgroup of K ∗

Think of multiplication by r as a rotation and the +b part as
translation

More generally, Zn with H generated by multiplication by unit r
such that r i − 1 coprime to n for all i .
Or K = Zn

p and H ⊂ GL(n, p) such that no element of H has eigen
value 1.
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When |H | is even

Proposition Suppose that f is an involution in Aut(K ) that fixes
only the identity (so |K | is odd).

Then f (k) = k−1 for all k .In
particular, K is abelian and |K | is odd.

Proof(Isaacs) Suppose k = x−1f (x) for some x . Then

f (k) = f (x)−1f 2(x) = f (x)−1x = k−1

Now just verify that x → x−1f (x) is one-to-one:

x−1f (x) = y−1f (y) implies f (xy−1) = xy−1.

Corollary For a Frobenius group G = HK , if |H| is even, then K is
an odd order abelian group and inversion is the only involution in
H.
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The GFR problem

Given a Frobenius group G = HK , find a graphical Frobenius
representation (GFR),

namely a Cayley graph C (K ,X ) where
stabilizer of identity is H.

So we first want to choose X such that stabilizer of S = X ∪ X−1

in Aut(K ) is H.
That means S is a union of orbits of H.
Then make sure there are no extra group or graph automorphisms.
The group part is easier (well not exactly).

History: This problem was proposed in 1970s by Mark Watkins to
his PhD student Kevin Doyle. Doyle died recently, with an
unpublished manuscript finding which Frobenius group G = HK
with |G | ≤ 300 have a GFR.There are no papers on GFRs. First
talk on them by Mark in Israel 2014. Followed by lots of discussion
at Rogia!!!
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Obvious Frobenius groups not having a GFR

Just as for GRRs, abelian groups are trouble: K abelian, not an
elem 2-group and |H| odd, no GFR

because inversion is always an extra group auto

Other obvious case: |H| = |K | − 1 since then Cayley graph is Kn

and has too many autos.
But note this doesn’t happen much because
Important observation If N characteristic in K , then NK and
H(K/N) are Frob groups, so |H| divides |N| − 1 and |K |/|N| − 1.
Since K is nilpotent, the only possibility is an elementary p-group
for some prime p.

Note that unlike abelian case, K can’t be generalized dicyclic its
unique involution would get fixed by H.
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What to attack?

So the GFR problem, like the GRR problem, has lots of cases:

1) First do H cyclic since H is almost Sylow-cyclic anyway.
2) |H| even (so K is odd order abelian).
a) K cyclic
b) K = C 2

p since K nilpotent so every K has a characteristic
subgroup that is an elem p-group.
3) |H| odd
a) K = Cn

2

b) K a general 2-group.
c) K a p-group for odd prime p.
4) |G | small.Have done |G | ≤ 300 by hand. Good for small noise
and to experiment withAlso have MAGMA data.
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H even order cyclic, K odd order abelian

How about |H| = 2?

This was done by the GRR people
(Imrich-Watkins 1976): all except C 2

3 ,C
3
3 .

What about K cyclic?
K = Cp and |H| > 2 already done 1967. But general Cn?
Note that here H must be cyclic since it leaves invariant any Sylow
p-subgroup. Also n must be odd since |H| even
Theorem(CTW, 2015) Let G = HK where K = Cn and |H| even
(so n odd). Then G has a GFR.
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Proof

Theorem (Caiheng Li 2005). If Γ is an arc-transitive circulant
(Cayley graph for Cn), then either every graph automorphism fixing
the identity is a group automorphism,

or n = mb and Γ has valence
(m − 1)b or (m − 1)(b − 1) (actually Γ = KmlexK

c
b or deleted

diagonal of that)
The graph Γ = Cay(Cn,S) where S is an orbit of H.It is arc
transitive. Note we do not have |H| = n− 1, so b > 1. Also m > 1
else Γ not connected.
There are no group automorphisms of Cn leaving S invariant other
than H itself
So our problem is to show the other two cases cannot occur.
First has valence (m − 1)b = |H| but |H| is coprime to n since |H|
divides n − 1.
For second, valence is |H| = (m− 1)(b− 1) let p be smallest prime
dividing n. Then |H||(p − 1) so |H| ≤ p − 1. But either
m − 1 ≥ p − 1 or b − 1 ≥ p − 1 and m − 1 > 2 and b − 1 > 2
(since both are odd).
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K = C 2
p

The next easiest (?!) thing to look at is |H| > 2 even and K = C 2
p .

Theorem (CWT 2016) Suppose K = C 2
p , p > 5 and H is

generated by the matrix M = [0 − 1|1 0] (which has order 4 and
M2 = −I .). Then Cay(K ,S) is a GFR for K where S is the union
of the orbits of (1, 0), (2, 0), (1, 2).
Proof Just look at the 1-sphere (subgraph spanning vertices
adjacent to (0, 0) As a graph it has only the symmetry induced by
H (e.g look at valence of each vertex)
Notice there is no graph automorphism fixing the 1-sphere (other
than the identity) because the vertex stabilizer acts freely on each
1-sphere, so if you fix one, you fix the neighboring one.
We conclude that Cay(K ,S) is a GFR for G .
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A class of non-GFRs for K = Cp × Cp

Let K = Cp × Cp for some odd prime p, where p ≡ 1 (mod 4).

Let
M ∈ GL(2, p) be a matrix of order p + 1 with M(p+1)/2 = −I (e.g
multiplication in GF (p2) by xp−1 where x generates the cyclic
multiplicative group GF (p2)∗).

Theorem(CTW, 2015) The Frobenius group G = HK , where
H = 〈M〉 and K = C 2

p has no GFR because every orbit of H is
invariant under linear transformation interchanging u,Mu.

Note that det(M) = 1 since (det(M)p+1 ≡ (det(M)2 ≡ 1 mod
(p). Also (det(M))(p+1)/2) = 1 and (p + 1)/2 is odd.
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Proof

Rewrite M with respect to the basis u,Mu. Since det(M) = 1, we
get: [

0 −1
1 Tr(M)

]
,

If A is matrix [0 1|1 0] that interchanges u and Mu, you easily
check that AMA−1 = M−1.

We claim that conjugation by A preserves each orbit of H = 〈M〉.
Then A preserves any generating set of K made up of orbits of H
and therefore gives an extra automorphism for any candidate GFR.

Note that since |H| = p + 1 divides |K | − 1 = p2 − 1, there are
p − 1 orbits all together.
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Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits.

Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two That gives (p − 1)/2 orbits, each invariant under A
Same is true for any orbit containing cu + cMu. That also provides
another (p − 1)/2 orbits invariant under A
Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two That gives (p − 1)/2 orbits, each invariant under A
Same is true for any orbit containing cu + cMu. That also provides
another (p − 1)/2 orbits invariant under A
Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two That gives (p − 1)/2 orbits, each invariant under A
Same is true for any orbit containing cu + cMu. That also provides
another (p − 1)/2 orbits invariant under A
Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two

That gives (p − 1)/2 orbits, each invariant under A
Same is true for any orbit containing cu + cMu. That also provides
another (p − 1)/2 orbits invariant under A
Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two That gives (p − 1)/2 orbits, each invariant under A

Same is true for any orbit containing cu + cMu. That also provides
another (p − 1)/2 orbits invariant under A
Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two That gives (p − 1)/2 orbits, each invariant under A
Same is true for any orbit containing cu + cMu.

That also provides
another (p − 1)/2 orbits invariant under A
Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two That gives (p − 1)/2 orbits, each invariant under A
Same is true for any orbit containing cu + cMu. That also provides
another (p − 1)/2 orbits invariant under A

Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Counting orbits stabilized by A

First, because A normalizes M, it takes orbits to orbits. Of course,
so does multiplication by a scalar c .

Next, since the only eigenvalue for M is −1, mult. by c takes an
orbit to itself only for c = −1.

Any orbit containing cu also contains cMu and A interchanges the
two That gives (p − 1)/2 orbits, each invariant under A
Same is true for any orbit containing cu + cMu. That also provides
another (p − 1)/2 orbits invariant under A
Note no orbit has both kinds because then dihedral action of A,M
would both interchange two adjacent points (u,Mu) in cyclic order
induced by M, and fix two (u + Mu,−u −Mu).



Dihedral vertex stabilizer

Notice that the trouble with the p + 1 is the dihedral stabilizer.

. There is one nice thing about dihedral stabilizers.
Theorem (CWT 2015) Suppose that H = Cn with n even and S is
an orbit generating K such that Stabid acts in the natural way as
Dn or Cn on the neighborhood of id . Then that action is faithful
and the only extra automorphisms of C (K ,S) are group
automorphisms.

Theorem (CWT 2015) Suppose |H| = 4 and an orbit S of H
generates K , then C (K , S) has natural D4 or C4 symmetry. In
particular, if K has a characteristic cyclic group (e.g.
K = C 2

3 × C5), then C (K ,S) is a GFR for G = HK .
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Dn or Cn on the neighborhood of id . Then that action is faithful
and the only extra automorphisms of C (K ,S) are group
automorphisms.

Theorem (CWT 2015) Suppose |H| = 4 and an orbit S of H
generates K , then C (K , S) has natural D4 or C4 symmetry. In
particular, if K has a characteristic cyclic group (e.g.
K = C 2

3 × C5), then C (K ,S) is a GFR for G = HK .



Small noise

For |G | ≤ 300, only the following Frobenius groups fail to have
GFRs (other than odd order abelian with |H| odd and
|H| = |K | − 1:

1) H = C3,K = C 4
2

2) K = C 2
3 , |H| = 2, 4 and K = C 3

3 , |H| = 2
3) K = C 2

5 and |H| = 4 generated by a scalar matrix or |H| ≥ 6
4) K = C 2

7 and |H| = 6 generated by a scalar matrix.

For example in (1) in orbit of x you must have x +h(x) +h2(x) = 0
orbits look like 1000, 0100, 1100 and 0010, 0001, 0011. Clearly
these don’t work since invariant under interchanging of 1000, 0100
and 0010, 0001. And three orbits has complement of valence 6.
(2) for |H| = 2 done by GRR people. For K = C 2

3 and |H|− = 4
must have valence 4 and easy to check all have dihedral symmetry.
For scalar matrices, can always express and third vector as linear
comb of other two, so can write orbits as u, ... v , ... u + v , ... so
need more than 3 orbits.
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MAGMA

Marston has long list of Frob groups of small order (e.g at most
500?) having or not having a GFR.

This includes the Frob group with |K | = 73 and |H| = 3 (smallest
group of odd over having a GFR).

Seems like the generic situation is for a Frobenius group to have a
GFR when we use enough orbits of H. For example, the 73

example smallest possible connection set has size 6, but we need
valence 18 to get a GFR.
But the p + 1 non-GFRs are not like anything for GRRs.Notice also
works when order is r(p + 1) for odd r |p − 1 so even for one prime
p, there may be many H which do not have a GFR.
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A Conjecture

So here is one, not so bold conjecture:
Conjecture There are only finitely many Frobenius groups with a
given complement H not having a GFR (other than |H| odd with
K abelian.)
It seems as soon as |K | >> |H| we have enough room to make S
the union of many orbits of H and then destroy extra
automorphisms.

If you can handle the extra graph automorphism
part, then some sort of counting argument should work since
number 2|K |/|H| of possible S grows fast than Aut(K ).Note that
the p + 1 example shows we need something like |K | > |H|2.
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