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LLovasz problem

Problem (Lovasz, 1969)

Does every vertex-transitive graph admit a Hamilton path?
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LLovasz problem

Problem (Lovasz, 1969)

Does every vertex-transitive graph admit a Hamilton path?

Conjecture (folklore)

Every Cayley graph (of order at least 3) has a Hamilton cycle.

Ciritical case: cubic Cayley graphs
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Hamilton cycles in cubic Cayley graphs

Theorem (Glover, Marusi¢, Kutnar, Malni¢, 2007-2012)

Let K = Cay(H; r,r=1,1) be a cubic Cayley graph, where
H=(r,l|r*=1=(rl)>=1,...) is a finite quotient
of the modular group PSL(2,7). Then K has a Hamilton path.

Moreover, if |H| =2 (mod 4) or if |r| = 0,£1 (mod 4),
then K has a Hamilton cycle.
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Let K = Cay(H; r,r=1,1) be a cubic Cayley graph, where
H=(r,l|r*=1=(rl)>=1,...) is a finite quotient
of the modular group PSL(2,7). Then K has a Hamilton path.

Moreover, if |H| =2 (mod 4) or if |r| = 0,£1 (mod 4),
then K has a Hamilton cycle.

Question 1.
What about the missing case |H| =0 (mod 4) and |r| =2 (mod 4)?
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Hamilton cycles in cubic Cayley graphs

Theorem (Glover, Marusi¢, Kutnar, Malni¢, 2007-2012)

Let K = Cay(H; r,r=1,1) be a cubic Cayley graph, where
H=(r,l|r*=1=(rl)>=1,...) is a finite quotient
of the modular group PSL(2,7). Then K has a Hamilton path.

Moreover, if |H| =2 (mod 4) or if |r| = 0,£1 (mod 4),
then K has a Hamilton cycle.

Question 1.
What about the missing case |H| =0 (mod 4) and |r| =2 (mod 4)?

Question 2.
What about the finite quotients of the group

oy, 2|3 =y =2 =y = (y2) = 1,...) ?
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Proof: topological background
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Proof: topological background

Main idea

@ Take the Cayley map M corresponding to
H={(rl|r=>2=()3=1,...)

@ Select a suitable set F of faces of M such that | JF is connected and
null-homologous, i.e., a 'tree’ of faces.

e Construct a Hamilton cycle as the topological boundary 9(|J F)

@ The result is a contractible Hamilton cycle in CM(H; r,rt, /).

The idea of constructing a Hamilton cycle as a boundary of a set of faces
of map goes back to W. R. Hamilton (1858).
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Do we need symmetry?

Do we need orientability?

Do we need contractible Hamilton cycles?
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Bounding Hamilton cycles in embedded graphs
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Bounding Hamilton cycles in embedded graphs

Definition 1. Let K < S be a graph embedded in a closed surface S and

let B C K. We say that B is one-sided in § if S — B is connected and the
boundary is also connected.
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Bounding Hamilton cycles in embedded graphs

Definition 1. Let K < S be a graph embedded in a closed surface S and

let B C K. We say that B is one-sided in § if S — B is connected and the
boundary is also connected.

Example: A tree in an embedded graph is always one-sided.
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Bounding Hamilton cycles in embedded graphs

Definition 1. Let K < S be a graph embedded in a closed surface S and
let B C K. We say that B is one-sided in § if S — B is connected and the
boundary is also connected.

Example: A tree in an embedded graph is always one-sided.

Definition 2. Let G < S be an embedding of a graph forming polytopal
map M. A weak 2-face colouring of M is a colouring of faces of M with
two colours s.t. at each vertex of there are precisely two edges separating
differently coloured faces.
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Bounding Hamilton cycles: characterisation

Let M be a polytopal map on a closed surface of Euler genus g. The
following statements are equivalent.

(i) M has a bounding Hamilton cycle.

(ii) The vertices of M* can be a partitioned into two subsets which
induce one-sided subgraphs H and K such that 5(H) + 8(K) = g.

(iii) M has a weak 2-face-colouring such that the vertices of M*
receiving colour 1 induce a one-sided subgraph of M*.
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Bounding Hamilton cycles: characterisation

Theorem 1

Let M be a polytopal map on a closed surface of Euler genus g. The
following statements are equivalent.

(i) M has a bounding Hamilton cycle.

(ii) The vertices of M* can be a partitioned into two subsets which
induce one-sided subgraphs H and K such that 5(H) + 8(K) = g.

(iii) M has a weak 2-face-colouring such that the vertices of M*
receiving colour 1 induce a one-sided subgraph of M*.

A polytopal map M admits a contractible Hamilton cycle <=

M has a weak 2-face-colouring such that the vertices of M* receiving
colour 1 induce a tree.
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Remarks

According to the Strong Embedding Conjecture, every 2-connected graph
has a polytopal embedding.

—> Theorem 1 can potentially be applied to all 2-connected graphs.
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Remarks

According to the Strong Embedding Conjecture, every 2-connected graph
has a polytopal embedding.

—> Theorem 1 can potentially be applied to all 2-connected graphs.

Part (ii) of Theorem 1 implies that a Hamilton cycle in a planar map M
corresponds to a vertex partition of M™ into two induced trees.
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Hamilton cycles in 2-face-coloured cubic polytopal maps

In certain cases a map may be given an initial 2-face-colouring.
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In certain cases a map may be given an initial 2-face-colouring.

Typical example: truncated maps (M)

@ vertex-faces +~  colour 0
o face-faces —  colour 1
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Hamilton cycles in 2-face-coloured cubic polytopal maps
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Typical example: truncated maps t(M)

@ vertex-faces +~  colour 0
o face-faces ~  colour 1

Let M be a cubic polytopal map with a fixed weak 2-face colouring. If the
vertices of M* receiving colour 1 can be partitioned into an induced tree
and an independent set, then M admits a contractible Hamilton cycle.
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Hamilton cycles in 2-face-coloured cubic polytopal maps

In certain cases a map may be given an initial 2-face-colouring.

Typical example: truncated maps (M)
@ vertex-faces +~  colour 0
o face-faces —  colour 1

Let M be a cubic polytopal map with a fixed weak 2-face colouring. If the
vertices of M* receiving colour 1 can be partitioned into an induced tree
and an independent set, then M admits a contractible Hamilton cycle.

A connected cubic graph G admits a partition of its vertex-set into
an induced tree and an independent set

<~
G has cellular embedding into an orientable surface with a single face.
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Contractible Hamilton cycles in truncated triangulations

Every truncated triangulation t(7) has a natural weak 2-face-colouring
o vertex-faces +—  colour 0

o face-faces —  colour 1

Theorem

Let T be a triangulation of a closed surface and let t(T) be the truncation
of T. The following statements are equivalent.

(i) t(T) has a contractible Hamilton cycle.

(ii) The vertex set of T* admits a partition {A, J} where A induces a tree
in the underlying graph of T* and J is independent.

v
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END OF PART |

Thank you!
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HAMILTON CYCLES IN EMBEDDED GRAPHS

PART Il
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Truncated triangulations
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Contractible Hamilton cycles in truncated triangulations

Every truncated triangulation t(7") has a natural weak 2-face-colouring

o vertex-faces +~—  colour 0
o face-faces —  colour 1
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Contractible Hamilton cycles in truncated triangulations

Every truncated triangulation t(7") has a natural weak 2-face-colouring

o vertex-faces +~—  colour 0
o face-faces —  colour 1

Observation

The subgraph of #(7)" induced by the vertices of colour 1 is isomorphic to
the underlying graph of 7 and is therefore cubic.
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Every truncated triangulation t(7") has a natural weak 2-face-colouring
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o face-faces —  colour 1

Observation

The subgraph of #(7)" induced by the vertices of colour 1 is isomorphic to
the underlying graph of 7 and is therefore cubic.

Theorem

Let T be a triangulation of a closed surface and let t(T") be the truncation
of T. The following statements are equivalent.
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Example: Construction of a Hamilton cycle in t(7")
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Example: Construction of a Hamilton cycle in t(7")
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Example: The required Hamilton cycle
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When does such a structure exist?
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Vertex-partitions in cubic graphs

The following are equivalent for every connected cubic graph G.

(i) V(G) has a partition {A, J} where A induces a tree and J is
independent.

(ii) G has an orientable cellular embedding with a single face.
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Contractible Hamilton cycles in truncated triangulations

Theorem

Let T be a triangulation of a closed surface and let t(']") be the truncation
of T. The following statements are equivalent.

(i) t(T) has a contractible Hamilton cycle.

(i1) The underlying graph of T admits an orientable cellular embedding
with a single face.
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Corollaries

Corollary

Let T be a triangulation of a closed surface with f faces. If T has no
separating 3-cycles, then its trucation admits a Hamilton path. Moreover,
t(7T) has a contractible Hamilton cycle in each of the following cases:

(i) f =2 (mod 4)
(ii) T* is cyclically 5-connected and T has a vertex of degree 0 (mod 4).

(iii) T* is cyclically 6-connected and T has two adjacent vertices with
degrees deg(u) = deg(v) = £1 (mod 4).
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Interesting example
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A unified approach to results of Glover, Marusi¢ et al.

Theorem

Let K = Cay(H; r,r~1,1) be a cubic Cayley graph, where
H={(r,l|r*=1?=(rl)®=1,...) is a finite quotient

of the modular group PSL(2,Z). Then the following hold.
(i) K has a Hamilton path.

(ii) K has a bounding Hamilton cycle with respect to its natural
embedding as a Cayley map CM(H;r,l) <—
|H| =2 (mod 4) or if |[r| =0,£1 (mod 4).
Furthemore, if CM(H; r,I) has a bounding Hamilton cycle, then it has a
contractible one.
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A unified approach to results of Glover, Marusi¢ et al.

Proof of (ii).
“=—": Construction.
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A unified approach to results of Glover, Marusi¢ et al.

Proof of (ii).
“=—": Construction.

“«<=": Counting argument:

Theorem

Let M be a polytopal map with n vertices and let Q be a one-sided
subgraph of M* determining a bounding Hamilton cycle in M.
If 5(Q) = b, then

> (deg(v)—2)—2b+2=n.
veV(Q)
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A unified approach to results of Glover, Marusi¢ et al.

Proof of (ii).
“=—": Construction.

“«<=": Counting argument:

Theorem

Let M be a polytopal map with n vertices and let Q be a one-sided
subgraph of M* determining a bounding Hamilton cycle in M.
If 5(Q) = b, then

> (deg(v)—2)—2b+2=n.
veV(Q)

In our case, M = CM(H; r, 1) is orientable, so Q@ must have an even Betti
number. Hence n = |H| =2 (mod 4), a contradiction.
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Truncations of Coxeter triangulations of the torus

Coxeter and Moser classified regular toroidal triangulations as {3,6}
where b and ¢ are non-negative integer parameters. The size of the
orientation-preserving automorphism group is 6(b® + bc + c?).
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Truncations of Coxeter triangulations of the torus

Coxeter and Moser classified regular toroidal triangulations as {3,6}
where b and ¢ are non-negative integer parameters. The size of the
orientation-preserving automorphism group is 6(b” + bc + c?).

The truncation of {3,6}, - has a bounding Hamilton cycle <=
at least one of b and c is odd.

Altshuler (1972) proved that all these graphs are hamiltonian.

= If b and c are even, then all Hamilton cycles are non-bounding.

Roman Nedela and Martin Skoviera Hamilton cycles 15/02/2016 30/ 32



Hamiltonicity of three-involution cubic Cayley graphs

Theorem

Let K = Cay(H; x,y, z) be a cubic Cayley graph, where
H={(x,y,z|x>=y?=22=1,(xy)3=(y2)3=1,...).

Then K admits a bounding Hamilton cycle with respect to the natural
associated embedding <= |H| =2 (mod 4) or |xz| is even.

Furthemore, if K has a bounding Hamilton cycle (with respect to the
natural embedding), then it has a contractible one.
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Thank you!



