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Roman Nedela and Martin Škoviera Hamilton cycles 15/02/2016 1 / 32



Lovász problem

Problem (Lovász, 1969)

Does every vertex-transitive graph admit a Hamilton path?

Conjecture (folklore)

Every Cayley graph (of order at least 3) has a Hamilton cycle.

Critical case: cubic Cayley graphs
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Hamilton cycles in cubic Cayley graphs

Theorem (Glover, Marušič, Kutnar, Malnič, 2007–2012)

Let K = Cay(H; r , r−1, l) be a cubic Cayley graph, where
H = 〈r , l | r s = l2 = (rl)3 = 1, . . . 〉 is a finite quotient
of the modular group PSL(2,Z). Then K has a Hamilton path.

Moreover, if |H| ≡ 2 (mod 4) or if |r | ≡ 0,±1 (mod 4),
then K has a Hamilton cycle.

Question 1.
What about the missing case |H| ≡ 0 (mod 4) and |r | ≡ 2 (mod 4)?

Question 2.
What about the finite quotients of the group

〈x , y , z | x2 = y 2 = z2 = (xy)3 = (yz)3 = 1, . . . 〉 ?
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Proof: topological background

l

r
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Proof: topological background

Main idea

Take the Cayley map M corresponding to
H = 〈r , l | r s = l2 = (rl)3 = 1, . . . 〉

Select a suitable set F of faces of M such that
⋃
F is connected and

null-homologous, i.e., a ‘tree’ of faces.

Construct a Hamilton cycle as the topological boundary ∂(
⋃
F)

The result is a contractible Hamilton cycle in CM(H; r , r−1, l).

The idea of constructing a Hamilton cycle as a boundary of a set of faces
of map goes back to W. R. Hamilton (1858).
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Do we need symmetry?

Do we need orientability?

Do we need contractible Hamilton cycles?
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Bounding Hamilton cycles in embedded graphs

Definition 1. Let K ↪→ S be a graph embedded in a closed surface S and
let B ⊆ K . We say that B is one-sided in S if S − B is connected and the
boundary is also connected.

Example: A tree in an embedded graph is always one-sided.

Definition 2. Let G ↪→ S be an embedding of a graph forming polytopal
map M. A weak 2-face colouring of M is a colouring of faces of M with
two colours s.t. at each vertex of there are precisely two edges separating
differently coloured faces.
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Bounding Hamilton cycles: characterisation

Theorem 1

Let M be a polytopal map on a closed surface of Euler genus g. The
following statements are equivalent.

(i) M has a bounding Hamilton cycle.

(ii) The vertices of M∗ can be a partitioned into two subsets which
induce one-sided subgraphs H and K such that β(H) + β(K ) = g.

(iii) M has a weak 2-face-colouring such that the vertices of M∗
receiving colour 1 induce a one-sided subgraph of M∗.

Theorem 2

A polytopal map M admits a contractible Hamilton cycle ⇐⇒
M has a weak 2-face-colouring such that the vertices of M∗ receiving
colour 1 induce a tree.
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Remarks

Remark 1

According to the Strong Embedding Conjecture, every 2-connected graph
has a polytopal embedding.

=⇒ Theorem 1 can potentially be applied to all 2-connected graphs.

Remark 2

Part (ii) of Theorem 1 implies that a Hamilton cycle in a planar map M
corresponds to a vertex partition of M∗ into two induced trees.
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Hamilton cycles in 2-face-coloured cubic polytopal maps

In certain cases a map may be given an initial 2-face-colouring.

Typical example: truncated maps t(M)

vertex-faces 7→ colour 0

face-faces 7→ colour 1

Theorem

Let M be a cubic polytopal map with a fixed weak 2-face colouring. If the
vertices of M∗ receiving colour 1 can be partitioned into an induced tree
and an independent set, then M admits a contractible Hamilton cycle.

Theorem

A connected cubic graph G admits a partition of its vertex-set into
an induced tree and an independent set ⇐⇒
G has cellular embedding into an orientable surface with a single face.
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Roman Nedela and Martin Škoviera Hamilton cycles 15/02/2016 10 / 32



Contractible Hamilton cycles in truncated triangulations

Every truncated triangulation t(T ) has a natural weak 2-face-colouring

vertex-faces 7→ colour 0

face-faces 7→ colour 1

Theorem

Let T be a triangulation of a closed surface and let t(T ) be the truncation
of T . The following statements are equivalent.

(i) t(T ) has a contractible Hamilton cycle.

(ii) The vertex set of T ∗ admits a partition {A, J} where A induces a tree
in the underlying graph of T ∗ and J is independent.
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END OF PART I

Thank you!
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HAMILTON CYCLES IN EMBEDDED GRAPHS

PART II
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Truncated triangulations

l

r
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Contractible Hamilton cycles in truncated triangulations

Every truncated triangulation t(T ) has a natural weak 2-face-colouring

vertex-faces 7→ colour 0
face-faces 7→ colour 1

Observation

The subgraph of t(T )∗ induced by the vertices of colour 1 is isomorphic to
the underlying graph of T ∗ and is therefore cubic.

Theorem

Let T be a triangulation of a closed surface and let t(T ) be the truncation
of T . The following statements are equivalent.

(i) t(T ) has a contractible Hamilton cycle.

(ii) The vertex set of T ∗ admits a partition {A, J} where A induces a tree
in the underlying graph of T ∗ and J is independent.
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Example: Construction of a Hamilton cycle in t(T )
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Example: Construction of a Hamilton cycle in t(T )

Roman Nedela and Martin Škoviera Hamilton cycles 15/02/2016 21 / 32



Example: The required Hamilton cycle
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When does such a structure exist?
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Vertex-partitions in cubic graphs

Theorem

The following are equivalent for every connected cubic graph G .

(i) V (G ) has a partition {A, J} where A induces a tree and J is
independent.

(ii) G has an orientable cellular embedding with a single face.
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Contractible Hamilton cycles in truncated triangulations

Theorem

Let T be a triangulation of a closed surface and let t(T ) be the truncation
of T . The following statements are equivalent.

(i) t(T ) has a contractible Hamilton cycle.

(ii) The underlying graph of T ∗ admits an orientable cellular embedding
with a single face.
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Corollaries

Corollary

Let T be a triangulation of a closed surface with f faces. If T has no
separating 3-cycles, then its trucation admits a Hamilton path. Moreover,
t(T ) has a contractible Hamilton cycle in each of the following cases:

(i) f ≡ 2 (mod 4)

(ii) T ∗ is cyclically 5-connected and T has a vertex of degree 0 (mod 4).

(iii) T ∗ is cyclically 6-connected and T has two adjacent vertices with
degrees deg(u) ≡ deg(v) ≡ ±1 (mod 4).
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Interesting example
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A unified approach to results of Glover, Marušič et al.

Theorem

Let K = Cay(H; r , r−1, l) be a cubic Cayley graph, where
H = 〈r , l | r s = l2 = (rl)3 = 1, . . . 〉 is a finite quotient
of the modular group PSL(2,Z). Then the following hold.

(i) K has a Hamilton path.

(ii) K has a bounding Hamilton cycle with respect to its natural
embedding as a Cayley map CM(H; r , l) ⇐⇒
|H| ≡ 2 (mod 4) or if |r | ≡ 0,±1 (mod 4).

Furthemore, if CM(H; r , l) has a bounding Hamilton cycle, then it has a
contractible one.
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A unified approach to results of Glover, Marušič et al.

Proof of (ii).
“=⇒”: Construction.

“⇐=”: Counting argument:

Theorem

Let M be a polytopal map with n vertices and let Q be a one-sided
subgraph of M∗ determining a bounding Hamilton cycle in M.
If β(Q) = b, then ∑

v∈V (Q)

(deg(v)− 2)− 2b + 2 = n.

In our case, M = CM(H; r , l) is orientable, so Q must have an even Betti
number. Hence n = |H| = 2 (mod 4), a contradiction.
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Truncations of Coxeter triangulations of the torus

Coxeter and Moser classified regular toroidal triangulations as {3, 6}b,c
where b and c are non-negative integer parameters. The size of the
orientation-preserving automorphism group is 6(b2 + bc + c2).

Corollary

The truncation of {3, 6}b,c has a bounding Hamilton cycle ⇐⇒
at least one of b and c is odd.

Altshuler (1972) proved that all these graphs are hamiltonian.

=⇒ If b and c are even, then all Hamilton cycles are non-bounding.
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Hamiltonicity of three-involution cubic Cayley graphs

Theorem

Let K = Cay(H; x , y , z) be a cubic Cayley graph, where
H = 〈x , y , z | x2 = y 2 = z2 = 1, (xy)3 = (yz)3 = 1, . . . 〉.
Then K admits a bounding Hamilton cycle with respect to the natural
associated embedding ⇐⇒ |H| ≡ 2 (mod 4) or |xz | is even.

Furthemore, if K has a bounding Hamilton cycle (with respect to the
natural embedding), then it has a contractible one.
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Thank you!
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