Hyperbolic volume, commensurability and Problem 23 of Thurston

Ruth Kellerhals
University of Fribourg

Symmetries and Covers of Discrete Objects
Queenstown, 19 February 2016

Happy birthday to Marston, Gareth, Steve, Richard and ...

Focus: Hyperbolic volume and some rationality questions

Discuss Thurston's Problem 23 as formulated on p. 380 in Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. AMS, vol. 6 (1982), i.e.

volumes of hyperbolic 3-manifolds are not all rationally related

For its solution it suffices to prove that the volume quotient of two Coxeter polyhedra in \mathbb{H}^{3} is irrational (by using Selberg's Lemma), or - for example - that

$$
\operatorname{vol}(\mathscr{E}) / \operatorname{vol}(\mathscr{W}) \notin \mathbb{Q}, \quad \text { where }
$$

- \mathscr{E} is the (orientable) figure-eight knot complement
- \mathscr{W} is the (orientable) Whitehead link complement

The corresponding knot and link

with volumes as follows:

- \mathscr{E} can be decomposed into 2 ideal regular tetrahedra, each of volume $3 Л\left(\frac{\pi}{3}\right)$
- \mathscr{W} arises by side identifications of 1 ideal regular octahedron of volume $8 Л\left(\frac{\pi}{4}\right)$

Here, the volumes are expressed in terms of the Lobachevsky function (related to Euler's dilogarithm)

$$
Л(x)=\frac{1}{2} \operatorname{Im} \operatorname{Li}_{2}\left(e^{2 \pi i x}\right)=\sum_{n=1}^{\infty} \frac{\sin (2 n x)}{n^{2}}=-\int_{0}^{x} \log |2 \sin t| d t, x \in \mathbb{R}
$$

Two models of hyperbolic geometry - I

Poincaré upper half space model $\mathbb{H}^{3} \subset \mathbb{E}_{+}^{3}$

- $\quad \operatorname{distance}^{\operatorname{dist}_{\mathbb{H}}}(p, q)=\left|\log \frac{p}{q}\right|$
- volume element $d \mathrm{vol}_{3}=\frac{d x d y d t}{t^{3}}$

Ideal regular hyperbolic polyhedra

A simple volume formula

Theorem [J. Milnor]
The volume of an ideal tetrahedron $S_{\infty}=S_{\infty}(\alpha, \beta, \gamma)$, where $\alpha+\beta+\gamma=\pi$, is given by

$$
\operatorname{vol} S_{\infty}=Л(\alpha)+Л(\beta)+Л(\gamma)
$$

Example.

The ideal regular tetrahedron characterised by $\alpha=\beta=\gamma=\frac{\pi}{3}$ has volume $3 \Omega\left(\frac{\pi}{3}\right) \sim 1.01494146$

Two models of hyperbolic geometry - II

Lorentz-Minkowski vector space model in $\mathbb{E}^{n, 1}$, i.e.

$$
\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\langle x, x\rangle_{n, 1}=(x, J x)=-1, x_{n+1}>0\right\}
$$

Let us go back...

In order to answer Problem 23 of Thurston in a positive way, it would be sufficient to prove:
the number $\lambda=\pi\left(\frac{\pi}{4}\right) / \pi\left(\frac{\pi}{3}\right)$ is irrational

Some evidence for its truth.....

Fundamental properties of the Lobachevsky function

Consider the three following essential functional properties of the Lobachevsky function $Л(x)$:

- $J(x)$ is odd
- $J(x)$ is π-periodic
- $Л(x)$ satisfies the distribution law

$$
Л(m x)=m \cdot \sum_{k=0}^{m-1} Л\left(x+\frac{k \pi}{m}\right)
$$

for each integer $m \neq 0$

Milnor's conjectures [Chapter 7, Thurston's Notes]

Conjectures

(A) Every rational linear relation between the real numbers $Л(x)$ with $x \in \mathbb{Q} \pi$ is a consequence of the three essential functional equations above.
(B) Fixing some denominator $N \geq 3$, the real numbers $\Pi(k \pi / N)$ with k relatively prime to N and $0<k<N / 2$ are linearly independent over \mathbb{Q}.

Commensurable groups

Definition. Two cofinite discrete groups $\Gamma_{1}, \Gamma_{2} \subset$ IsomH H^{n} are commensurable (in the wide sense) if the intersection $\Gamma_{1} \cap \Gamma_{2}^{\prime}$ of Γ_{1} with some conjugate Γ_{2}^{\prime} is of finite index in both Γ_{1} and Γ_{2}^{\prime}.

Properties

- Commensurability preserves the cocompact and cofinite nature of groups
- The covolume quotient of two commensurable groups is a rational number
- Commensurability preserves arithmeticity...

Arithmeticity criterion of Margulis

THEOREM [G. Margulis] Let $\Gamma \subset$ IsomHH ${ }^{n}$ be a discrete group. Then, Γ is non-arithmetic if and only if its commensurator $C(\Gamma):=\left\{g \in \operatorname{Isom} \mathbb{H}^{n} \mid \Gamma \cap g \Gamma g^{-1}\right.$ of finite index in Γ and $\left.g \Gamma g^{-1}\right\}$ is a discrete group in IsomHH ${ }^{n}$.

In particular:

- If Γ is non-arithmetic, then $[C(\Gamma): \Gamma]$ is finite
- $C(\Gamma)$ provides - among its commensurable groups - the quotient space of minimal volume

Vinberg's arithmeticity criterion

Let $G=\left(g_{i j}\right)$ be the Gram matrix of a cofinite hyperbolic Coxeter group Γ (and of its fundamental polyhedron P) in \mathbb{H}^{n}. Let F be the field generated by all cycles $g_{i_{1} i_{2}} g_{i_{2} i_{3}} \cdots g_{i_{k-1} i_{k}} g_{i_{k} i_{1}}$, and let \widetilde{F} be the field generated by all entries of G.

Criterion. Γ is arithmetic (and defined over F) if and only if
(1) \widetilde{F} is totally real
(2) for any embedding $\sigma: \widetilde{F} \rightarrow \mathbb{R}$ with $\left.\sigma\right|_{F} \neq i d$:
the matrix $\quad G^{\sigma}:=\left(g_{i j}^{\sigma}\right)$ is positive semi-definite
(3) the cyclic products of the matrix $2 G$ are integers of F

Criterion*. If Γ is NOT cocompact, then Γ is arithmetic (over \mathbb{Q}) if and only if all the cycles of $2 G$ are rational integers

Some arithmetic hyperbolic Coxeter polyhedra - I

The two basic Coxeter tetrahedral groups giving rise to the symmetry groups of the ideal regular tetrahedron and the ideal regular octahedron in \mathbb{H}^{3} :

$\bullet \bullet . \quad 4 . \quad$ with volume $\frac{1}{6} \pi\left(\frac{\pi}{4}\right)$

Some arithmetic hyperbolic Coxeter polyhedra - II

The hyperbolic Coxeter orbifold Q_{*} is based on the Coxeter pyramid in $P_{*} \subset \mathbb{H}^{17}$ and yields the minimal volume orbifold among ALL arithmetic hyperbolic oriented n-orbifolds !

Figure: The graph of the Coxeter pyramid $P_{*}=\left[3^{2,1}, 3^{12}, 3^{1,2}\right]$ in \mathbb{H}^{17}

$$
\begin{aligned}
\operatorname{vol}\left(Q_{*}\right) & =\frac{691 \cdot 3617}{2^{38} \cdot 3^{10} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17} \zeta(9) \\
& \approx 2.072451981 \cdot 10^{-18}
\end{aligned}
$$

Vincent Emery:
Even unimodular Lorentzian lattices and hyperbolic volume J. Reine Angew. Math. (2014)

Some non-arithmetic Coxeter polyhedra - I

The two Coxeter polyhedra P_{1} and P_{2} are non-arithmetic:

They are given by pyramids with an apex at infinity whose neighborhood is topologically a product of 2 segments, and

$$
\begin{aligned}
& \operatorname{vol}\left(P_{1}\right)=\frac{1}{3} Л\left(\frac{\pi}{4}\right)+\frac{1}{8} Л\left(\frac{\pi}{6}\right)+Л\left(\frac{5 \pi}{24}\right)-Л\left(\frac{\pi}{24}\right) \sim 0.403621 \\
& \operatorname{vol}\left(P_{2}\right)=\text { Л }\left(\frac{\pi}{4}\right)+\frac{1}{8} Л\left(\frac{\pi}{6}\right)+Л\left(\frac{5 \pi}{24}\right)-Л\left(\frac{\pi}{24}\right) \sim 0.708943
\end{aligned}
$$

Some non-arithmetic hyperbolic Coxeter polyhedra - II

A few more non-arithmetic discrete groups in Isom \mathbb{H}^{3} generated by the reflections in the facets of the (non-compact) Coxeter ...

- tetrahedron S

- pyramid T

- ideal cube W with facet distances $\cosh I_{1}=$ $\cosh /_{2}=\frac{5}{2}, \cosh /_{3}=\frac{2 \sqrt{3}}{3} \quad$ (Matthieu Jacquemet, 2015)

Matthieu Jacquemet and Rafael Guglielmetti

Matthieu Jacquemet and

Rafael Guglielmetti the brave bungee jumper at SODO2012

Remarkable properties of S, T and W

- The volumes of S, T and W can be computed in terms of the Lobachevsky function $J(x)$ with arguments $x \in \mathbb{Q} \pi$, only !

$$
\begin{aligned}
& \operatorname{vol}(S)=\frac{5}{8} Л\left(\frac{\pi}{3}\right)+\frac{1}{3} Л\left(\frac{\pi}{4}\right) \\
& \sim 0.36411 \\
& \operatorname{vol}(T)=\frac{5}{4} Л\left(\frac{\pi}{3}\right)+\frac{1}{3} Л\left(\frac{\pi}{4}\right) \\
& \sim 0.57555 \\
& \operatorname{vol}(W)=10 Л\left(\frac{\pi}{3}\right)
\end{aligned}
$$

- The volume quotients of pairs of S, T and W are simple rational expression in terms of λ (or λ^{-1})

Commensurability classification of Coxeter tetrahedra

In 2002, together with Johnson, Ratcliffe and Tschantz we classified all hyperbolic Coxeter simplex groups in $\mathbb{H}^{n}, n \geq 3$, up to commensurability. They exist up to $n=9$.

In the case of arithmetic Coxeter tetrahedral groups there are precisely TWO commensurability classes, represented by

$$
\begin{array}{lll}
\bullet \quad[3,3,6] & =\bullet-\bullet \bullet & \text { with covolume } \frac{1}{8} J\left(\frac{\pi}{3}\right) \\
\bullet & {[3,4,4]} & =\bullet \bullet \bullet \bullet 4
\end{array}
$$

However, this result does not imply that $\lambda \in \mathbb{Q}$!
Recall that all covolume quotients of any two discrete groups in Isom $\mathbb{H}^{2 m}$ are rational numbers since covolumes are proportional to the Euler characteristic being rational multiples of π^{m}

Commensurability classification of Coxeter pyramid groups

- In 2015, together with Guglielmetti and Jacquemet, we classified up to commensurability all hyperbolic Coxeter pyramid groups of rank $n+2$ in $\mathbb{H}^{n}, n \geq 3$. They exist up to $n=17$.
- Proof uses diverse known results of Maclachlan, Reid (in the arithmetic case) \& results of Bieberbach, Maxwell, Karrass-Solitar
... furthermore we developped some new tools in the general case:
Theorem [GJK, 2015]
Let Γ be a hyperbolic Coxeter pyramid group which is the free product of the Coxeter groups $\widehat{\Theta_{1}}=\left[p_{1}, \ldots, p_{n-1}, q_{1}\right]$ and $\widehat{\Theta_{2}}=\left[p_{1}, \ldots, p_{n-1}, q_{2}\right]$ amalgamated by their common Coxeter subgroup $\Phi=\left[p_{1}, \ldots, p_{n-1}\right]$, where $p_{1}=\infty$ for $n=3$. Suppose that \mathbb{H}^{n} / Γ is 1 -cusped. If $q_{1} \neq q_{2}$, then Γ is incommensurable to Θ_{1} and Θ_{2}.

A special pair of Coxeter pyramids in \mathbb{H}^{3}

The techniques developped so far do not help to decide about the commensurability of the reflection groups Γ_{1} and Γ_{2} associated to the Coxeter pyramids P_{1} and P_{2}

A numerical check (with high precision) "indicates" that the volume quotient

$$
\begin{aligned}
\alpha:=\frac{\operatorname{vol}\left(P_{1}\right)}{\operatorname{vol}\left(P_{2}\right)} & =1-\frac{\frac{2}{3} Л\left(\frac{\pi}{4}\right)}{Л\left(\frac{\pi}{4}\right)+\frac{1}{8} Л\left(\frac{\pi}{6}\right)+Л\left(\frac{5 \pi}{24}\right)-Л\left(\frac{\pi}{24}\right)} \\
& \sim 0.5693280784403574
\end{aligned}
$$

is an irrational number, which suggests that the groups Γ_{1} and Γ_{2} are not commensurable ...

The irrationality of α in view of Milnor's Conjecture

Write $\beta:=2 / 3(1-\alpha)$, that is,

$$
(\beta-1) \text { Л }\left(\frac{\pi}{4}\right)=\frac{1}{8} \text { Л }\left(\frac{\pi}{6}\right)+Л\left(\frac{5 \pi}{24}\right)-Л\left(\frac{\pi}{24}\right)
$$

By means of the distribution law applied to $m=3$ and $x=\pi / 8$ as well as to $m=2, m=3$ and $x=\pi / 12$, we obtain the expressions

$$
\begin{gathered}
Л\left(\frac{5 \pi}{12}\right)=\frac{2}{3} Л\left(\frac{\pi}{4}\right)-\frac{1}{4} Л\left(\frac{\pi}{6}\right) ; \\
Л\left(\frac{5 \pi}{24}\right)=Л\left(\frac{\pi}{24}\right)+\frac{2}{3} Л\left(\frac{\pi}{8}\right)+\frac{1}{2} Л\left(\frac{5 \pi}{12}\right)-\frac{1}{2} Л\left(\frac{\pi}{4}\right), \text { whence } \\
Л\left(\frac{\pi}{8}\right)=\frac{6 \beta-5}{4} Л\left(\frac{\pi}{4}\right)
\end{gathered}
$$

Suppose now that α and therefore β are rational numbers, that is, the values $\Pi\left(\frac{\pi}{8}\right)$ and $Л\left(\frac{\pi}{4}\right)$ are \mathbb{Q}-linearly dependent - this is a contradiction to Milnor's Conjecture (B) !

Now a rigorous proof - I

We know that the groups Γ_{1} and Γ_{2} are NOT arithmetic.

- Assume that Γ_{1} and Γ_{2} are commensurable, that is, the commensurator $C:=C\left(\Gamma_{1}\right)=C\left(\Gamma_{2}\right)$ is a non-cocompact but cofinite discrete subgroup of Isom \mathbb{H}^{3} containing both groups as subgroups of finite index
- Write

$$
\begin{equation*}
\alpha=\frac{\operatorname{covol}\left(\Gamma_{1}\right)}{\operatorname{covol}\left(\Gamma_{2}\right)}=\frac{\operatorname{covol}\left(\Gamma_{1}\right) / \operatorname{covol}(C)}{\operatorname{covol}\left(\Gamma_{2}\right) / \operatorname{covol}(C)}=\frac{\left[C: \Gamma_{1}\right]}{\left[C: \Gamma_{2}\right]} \tag{*}
\end{equation*}
$$

- By results of Meyerhoff and Adams, the covolume of C is universally bounded from below according to

$$
\operatorname{covol}(C) \geq \operatorname{covol}([3,3,6])=\pi(\pi / 3) / 8
$$

Now a rigorous proof - II

- By accurate numerical computations with the softwares Mathematica ${ }^{\circledR} 10$ and GP/PARI 2.7.4 one can deduce

$$
\begin{aligned}
& \operatorname{covol}\left(\Gamma_{2}\right)=Л\left(\frac{\pi}{4}\right)+\frac{1}{8} Л\left(\frac{\pi}{6}\right)+Л\left(\frac{5 \pi}{24}\right)-Л\left(\frac{\pi}{24}\right) \sim 0.708943, \\
& \operatorname{covol}([3,3,6])=\frac{1}{8} Л(\pi / 3) \sim 0.042289, \\
& \text { so that }\left[C: \Gamma_{2}\right]<17
\end{aligned}
$$

- Finally, it is easy to check that there is no rational solution α to $(*)$ with an approximate value $\alpha \sim 0.569328$.

Contradiction!

The classification result in the non-arithmetic case

Theorem [GJK, 2015]
Let 「 \subset Isom \mathbb{H}^{n} be one among the 38 non-arithmetic Coxeter pyramid groups with $n+2$ generators. Then, it belongs to one of the commensurability classes \mathscr{N}_{n} given by representatives and cardinalities $v_{n}=\left|\mathscr{N}_{n}\right|$ according to

n	$v_{n}=1$	$v_{n}=2$	$v_{n}=3$	$v_{n}=4$
3	$[(3, \infty, 4),(3, \infty, 4)]$	$\begin{gathered} {[\infty, 3,(3, \infty, k)] \text { for }} \\ k=4,5,6 \end{gathered}$		$[\infty, 3,5, \infty]$
		$\begin{gathered} {[\infty, 3,(I, \infty, m)] \text { for }} \\ 4 \leq 1<m \leq 6 \end{gathered}$		
		[$\infty, 4,(3, \infty, 4)]$		
4		$\begin{gathered} {\left[6,3^{2},(k, \infty, I)\right] \text { for }} \\ 3 \leq k<I \leq 5 \end{gathered}$	[$\left.4^{2}, 3,(3, \infty, 4)\right]$	$\left[6,3^{2}, 5, \infty\right]$
5		$\left[4,3^{2,1},(3, \infty, 4)\right]$		
6			$\left[3,4,3^{3},(3, \infty, 4)\right]$	
10	$\left[3^{2,1}, 3^{6},(3, \infty, 4)\right]$			

Table: Commensurability classes \mathscr{N}_{n} in the non-arithmetic case

The classification result in the arithmetic case

Theorem [GJK, 2015]
Let $\Gamma \subset \operatorname{Isom} \mathbb{H}^{n}$ be one among the 162 arithmetic Coxeter pyramid groups. Then, it belongs to one of the commensurability classes \mathscr{A}_{n}^{k} given by representatives and cardinalities $\alpha_{n}^{k}=\left|\mathscr{A}_{n}^{k}\right|, k \geq 1$, according to the following table:

The arithmetic Coxeter pyramid classes

$\left.\begin{array}{r|c|c|c|c}n & \mathscr{A}_{n}^{1} \div \alpha_{n}^{1} & \mathscr{A}_{n}^{2} \div \alpha_{n}^{2} & \mathscr{A}_{n}^{3} \div \alpha_{n}^{3} & \mathscr{A}_{n}^{4} \div \alpha_{n}^{4} \\ \hline \hline 3 & {[(3, \infty, 3),(4, \infty, 4)]} & {[(3, \infty, 3),(6, \infty, 6)]} & {[(3, \infty, 3),(3, \infty, 3)]} & \\ \hline 4 & {[6,3,3,3, \infty]} & 4 & {[4,4,3,3, \infty]} \\ & 4 & 20\end{array}\right)$

λ and the incommensurability of the groups S, T

The number $\lambda=\Omega\left(\frac{\pi}{4}\right) / \pi\left(\frac{\pi}{3}\right)$ appears when proving the incommensurability of the Coxeter groups S and T :

- Suppose that the groups S and T are commensurable, i.e.

$$
\gamma:=\frac{\operatorname{vol}(S)}{\operatorname{vol}(T)}=1-\frac{15 \pi\left(\frac{\pi}{3}\right)}{30 Л\left(\frac{\pi}{3}\right)+8 Л\left(\frac{\pi}{4}\right)}=1-\frac{1}{2+\frac{8}{15} \lambda} \in \mathbb{Q}
$$

- Since S, T are non-arithmetic, we have $C:=C(S)=C(T)$, and we can write

$$
\gamma=\frac{\operatorname{vol}(S)}{\operatorname{vol}(T)}=\frac{\operatorname{vol}(S) / \operatorname{vol}(C)}{\operatorname{vol}(T) / \operatorname{vol}(C)}=\frac{[C: S]}{[C: T]}
$$

continuation...

- Since C is not cocompact and non-arithmetic, $\operatorname{vol}(C)>\pi\left(\frac{\pi}{4}\right) / 4 \quad$ (Adams, Neumann-Reid)
- $[C: T]=\frac{\operatorname{vol}(T)}{\operatorname{vol}(C)}<\frac{4}{3}+\frac{5 \Omega\left(\frac{\pi}{3}\right)}{J\left(\frac{\pi}{4}\right)}<5.03 \ldots, \quad$ i.e. $[C: T] \leq 5$
- A computation with high precision yields the estimate $\gamma=1-\frac{1}{2+\frac{8}{15} \lambda} \sim 0.6326210281074754 \ldots$
- But there is NO $\gamma \in \mathbb{Q}$ with $\gamma \sim 0.6326210281074754 \ldots$ and such that $\gamma \cdot I=[C: S]$ is integral for $1 \leq I \leq 5$
- Hence, the groups S and T are incommensurable

Thank you!
