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Suppose G is a group of automorphisms of some compact surface S of genus > 1.

How can we determine whether G is the full automorphism group of S or, on the

contrary, the action of G can be extended to the action of some larger group?

We will consider not only Riemann surfaces but also surfaces which might be

non-orientable or with boundary.
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belongs to Aut(S)�hu, vi. So also this action of C16⇥C2 on S extends to a larger

group action.

Instead of algebraic equations, the Uniformization Theorem allows us to use the

combinatorial theory of discrete subgroups of isometries of the hyperbolic plane.
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of the hyperbolic plane H under the action of some surface Fuchsian group ⇤.

A (finite) group G is a group of automorphisms of S = H/⇤ if it is isomorphic to

the quotient �/⇤ for some Fuchsian group � containing ⇤ as a normal subgroup.

Equivalently, there exists an epimorphism ✓ : � ! G with ker ✓ = ⇤.

With this terminology, the problem of extendability can be read as:

“When does ✓ : � ! G extend to an epimorphism ✓

0 : �0 ! G

0 (with the

same kernel ⇤) for some larger NEC group �0 containing �?”
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This depends mainly on the geometry of a fundamental region for �, which is

(algebraically) encoded in the signature �(�) of �.

In most cases � is not contained as a subgroup of finite index in any other Fuchsian

group. If this is the case then the action of the group G = �/⇤ cannot be extended.
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Fuchsian pairs (�(�), �(�0)) with � normal in �0

�(�) �(�0) Index

(2; —) (0; 2, 2, 2, 2, 2, 2) 2
(1; t, t) (0; 2, 2, 2, 2, t) 2
(1; t) (0; 2, 2, 2, 2t) 2
(0; t, t, t, t) (0; 2, 2, 2, t) 4
(0; t1, t1, t2, t2) (0; 2, 2, t1, t2) 2
(0; t, t, t) (0; 3, 3, t) 3
(0; t, t, t) (0; 2, 3, 2t) 6
(0; t1, t1, t2) (0; 2, t1, 2t2) 2



Fuchsian pairs (�(�), �(�0)) with � not normal in �0

�(�) �(�0) Index

(0; 7, 7, 7) (0; 2, 3, 7) 24
(0; 2, 7, 7) (0; 2, 3, 7) 9
(0; 3, 3, 7) (0; 2, 3, 7) 8
(0; 4, 8, 8) (0; 2, 3, 8) 12
(0; 3, 8, 8) (0; 2, 3, 8) 10
(0; 9, 9, 9) (0; 2, 3, 9) 12
(0; 4, 4, 5) (0; 2, 4, 5) 6
(0; t, 4t, 4t) (0; 2, 3, 4t) 6
(0; t, 2t, 2t) (0; 2, 4, 2t) 4
(0; 3, t, 3t) (0; 2, 3, 3t) 4
(0; 2, t, 2t) (0; 2, 3, 2t) 3
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Assume we have S = H/⇤ and ✓ : � ! C
n

with ker ✓ = ⇤. Then n = 2t.

Is C2t = Aut(S)? We have to determine whether ✓ can be extended or not.
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Consistency with the embedding yields:

• If ✓(x2) = ✓(x3) then G

0 = ha, b | a2t = b

4 = (ab)2 = [a, b2] = 1i.

• If ✓(x2) = ✓(x3)t+1 then G

0 = ha, b | a2t = b

4 = (ab)2 = b

2
ab

2
a

t�1 = 1i.

• If ✓(x2) 6= ✓(x3), ✓(x3)t+1 then no extension is possible, so C2t = Aut(S).
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S is a compact Riemann surface:

• G cyclic: [EB & MC]
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• G arbitrary: [EB, MC & JC]
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Trans. Amer. Math. Soc. 355 (2003), 1537–1557.

We are now working on this question when S is a compact Klein surface.
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The role played on Rieman surfaces by Fuchsian groups is played on Klein surfaces

by NEC groups.

• An NEC group is a discrete subgroup � < Isom±(H) with H/� compact.

A compact Klein surface S of genus > 1 can be considered as the orbit space H/⇤

of the hyperbolic plane H under the action of some surface NEC group ⇤.

A (finite) group G is a group of automorphisms of S = H/⇤ if it is isomorphic to

the quotient �/⇤ for some NEC group � containing ⇤ as a normal subgroup:

✓ : � ! G onto, with ker ✓ = ⇤.

We also have a list of always non-maximal NEC signatures.

• Normal pairs (�(�), �(�0)) with � / �0 (Bujalance, 1982),

• Non-normal pairs (�(�), �(�0)) with � 6/ �0 (Estévez & Izquierdo, 2006).
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Assume S = H/⇤ is bordered and ✓ : � ! C
n

with ker ✓ = ⇤.

Question: Is C
n

= Aut(S)? Answer: No, this cyclic action always extends.

Theorem: (EB, JC, MC, Rev. Mat. Iberoam. (2015)):

This happens for all non-maximal NEC signatures! (unlike the Fuchsian case).
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Assume S = H/⇤ is unbordered and non-orientable and ✓ : � ! C
n

with

ker ✓ = ⇤.

Question: Is C
n

= Aut(S)?

Theorem: (EB, JC, MC, Trans. Amer. Math. Soc. (2013)):

The action of a cyclic group with non-maximal NEC signature on an unbordered

non-orientable surface always extends to the action of a larger group.
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Example.

�(�) = (1;�; [t]; {(�)}), �(�0) = (0; +; [2]; {(2, 2, t)}), index |�0 : �| = 2.

Recall � ⇠= hd, x, c | xt = c

2 = [d 2
x, c] = 1i.

If there exists ✓ : � ! G with ker ✓ = ⇤ then

✓ : � ! G

d 7! a

x 7! b

c 7! 1

So G admits the (partial) presentation G = ha, b | bt = · · · = 1i.
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, b 7! b
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Consistency with the embedding of � in �0 yields that the action extends if and

only if a 7! a

�1
, b 7! b

�1 is an automorphism for the above presentation.

This happens, for instance, for any presentation of an abelian group.

Similar results are obtained for unbordered non-orientable surfaces.



Thank you!






