

In lecture 1 we saw:

\searrow Classifying "Maximal subgroups of $\operatorname{Sym}(X)$ and $\operatorname{Alt}(X)$ " (X finite) required

- O'Nan—Scott Theorem for the primitive types
- Maximal factorisations of all almost simple groups
\searrow Studying symmetric (point-transitive) structures often requires knowledge of full automorphism group
- Problem: finding overgroups of given transitive groups
- Solving this: combination of "refined O'Nan—Scott" and almost simple group facrtoisations
\searrow This lecture: a bit about the almost simple factorisations; a start on an using them.

Remember the kinds of finite simple groups:

The Periodic Table Of Finite Simple Groups

Alternating and symmetric groups $\mathbf{G}=\operatorname{Alt}(\mathrm{n})$ and Sym(n)

$\searrow G=A B$ (and neither A not B contains Alt(n))

- A, say, satisfies $\operatorname{Alt}(k) \times \operatorname{Alt}(n-k) \leq A \leq \operatorname{Sym}(k) \times \operatorname{Sym}(n-k)$
- While B is k-homogeneous (transitive on k-subsets)
- Where $k=1,2,3,4$, or 5
- [or some extra cases when $\mathrm{n}=6,8$, and 10]
\pm Comments
- 1980 Wiegold \& Williamson classified those with $\mathrm{A} \cap \mathrm{B}=1$
- k-homogeneous groups known explicitly [using simple group classn.]

Sporadic almost simple groups

v Sporadic almost simple group $G=A B$

y 1986 Gentchev
if both A, B simple
v 1990 Liebeck, CEP, Saxl if both A and B maximal

- Generous help from Rob Wilson
v 2006 Giudici
all of them
[J. Algebra]
\searrow Comments: Mathieu groups have many; some (e.g. Monster) have none

The Periodic Table Of Finite Simple Groups

$y G=A B$
Courtesy: Ivan Andrus 2012

Exceptional Lie type groups G

У 1987 Herring Liebeck SaxI
found all of them

- Only groups factorisable G are $G_{2}\left(3^{c}\right), G_{2}(4)$ and $F_{4}\left(2^{c}\right)$
\searrow This left the classical groups to be dealt with [most difficult case!]

\searrow The simple groups PSL, PSp, PSU, $\mathrm{P} \Omega^{+}, P \Omega^{-}, \mathrm{P} \Omega^{\circ}$

Classical Lie type groups G

$y G=A B$
y 1990 Liebeck CEP SaxI found all maximal factorisations

- All families of groups factorise except odd dimensional PSU
- Five pages of tables -- published in AMS Memoir
\searrow Why so hard? What more known?
У 2010 Liebeck CEP SaxI
A maximal and $\mathrm{A} \cap \mathrm{B}=1$ [exact factorisations]
- Just really hard - complete classification not in sight

Applications of factorisations

\geq Recall: if $G<H<\operatorname{Sym}(X)$ then G is transitive if and only if $H_{\alpha} G=H$
\searrow Often use factorisations to explore existence of larger groups preserving a point-transitive structure.
\searrow "Algebraic example": Maximal subgroup problem. Deciding if an almost simple primitive group is maximal
\searrow We consider two applications: to graphs and cartesian dcompositions

Let Γ be a graph and $G<A u t(\Gamma)$ be transitive on arcs and primitive on vertices [arcs: "directed edges"]

\pm Is it possible for Aut (Γ) to be "very much bigger" than G ?
\searrow Could we have $\mathrm{G}<\mathrm{H} \leq \operatorname{Aut}(\Gamma)$ and G , H have different socles?
v Surely yes, sometimes.

Socle is the subgroup generated by all the minimal normal subgroups
\pm Example: Γ the "triangle graph" with vertices pairs from $\{1,2, \ldots, n\}$ and edges $\{A, B\}$ if the pairs A, B meet. $\quad \operatorname{Aut}(\Gamma)=\operatorname{Sym}(n)$

- Take G any 3-transitive subgroup of $\operatorname{Sym}(\mathrm{n}) ; \mathrm{G}$ is arc-transitive and usually vertex-primitive
- E.g. If $\mathrm{n}=\mathrm{q}+1$ then $\mathrm{G}=\mathrm{PGL}(2, \mathrm{q})<\operatorname{Sym}(\mathrm{q}+1)$
- E.g. $\mathrm{M}_{11}<\mathrm{M}_{12}<\operatorname{Sym}(12)$

$\mathrm{G}<\mathrm{H} \leq \mathrm{Aut}(\Gamma)$ with G transitive on arcs and primitive on vertices, and G, H with different socles

\searrow How could we classify them all?
\searrow Understand what happens in the groups: let $X=$ set of vertices.
$>$ Then the set of arcs (directed edges) is an orbit for both G and H in $X \times X$
\searrow Also the vertex stabilisers: G_{α} maximal in G, and H_{α} maximal in H
\searrow And we have factorisations: $H=G H_{\alpha}$ and for an $\operatorname{arc}(\alpha, \beta), H_{\alpha}=G_{\alpha} H_{\alpha \beta}$
\searrow Tools/Methods: O'Nan—Scott Theorem and factorisations
\searrow Lead first to source of generic examples:
$\mathrm{G}<\mathrm{H} \leq \operatorname{Aut}(\Gamma)$ with G transitive on arcs and primitive on vertices, and G, H with different socles

\pm ONS-product-type: H preserves cartesian decomposition $\mathrm{X}=\mathrm{Y}^{\mathrm{k}}$ with $\mathrm{k}>1$

- Then $\mathrm{H}<\operatorname{Sym}(\mathrm{Y})$ wr Sym(k) in "product action"
- Each of G, H "induces" a primitive $\mathrm{G}_{0}<\mathrm{H}_{0}<\operatorname{Sym}(\mathrm{Y})$
- Gives $\mathrm{H}<\mathrm{H}_{0}$ wr Sym(k) and $\mathrm{G}<\mathrm{G}_{0}$ wr Sym(k)

We give a construction:
A cartesian product of graphs

- Each example Γ_{0} with $G_{0}<H_{0}<\operatorname{Aut}\left(\Gamma_{0}\right)$ lifts to an example Γ for $\mathrm{G}<\mathrm{H}$
- With $\operatorname{soc}(\mathrm{G})=\operatorname{soc}\left(\mathrm{G}_{0}\right)^{\mathrm{k}}$ and $\operatorname{soc}(\mathrm{H})=\operatorname{soc}\left(\mathrm{H}_{0}\right)^{\mathrm{k}}$
$\mathrm{G}<\mathrm{H} \leq \operatorname{Aut}(\Gamma)$ with G transitive on arcs and primitive on vertices, and G, H with different socles
\geq Analysis tricky: if $\mathrm{H}<\mathrm{H}_{0}$ wr $\operatorname{Sym}(\mathrm{k})$ and $\mathrm{X}=\mathrm{Y}^{\mathrm{k}}$ with $\mathrm{k}>1$ then
- Either $\operatorname{soc}(G)=\operatorname{soc}\left(G_{0}\right)^{\mathrm{k}}$ and $\operatorname{soc}(H)=\operatorname{soc}\left(\mathrm{H}_{0}\right)^{\mathrm{k}}$ and we find all possibilities for G_{0} and H_{0}
- or ~3 exceptional cases: e.g. $G=\operatorname{Sym}(6) .2<H=\operatorname{Sym}(6)$ wr Sym(2) [other two have $G_{0}=M_{12}$ and $G_{0}=\operatorname{Sp}(4,4)$]

Unexpected cartesian decompositions preserved by simple groups - more on this later

$\mathrm{G}<\mathrm{H} \leq \operatorname{Aut}(\Gamma)$ with G transitive on arcs and primitive on vertices, and G, H with different socles

\searrow Lot of hard work dealing with all other ONS-types for H:
v Tool: "Primitive Inclusions": classification of possible ONS-types for (G, H) 1990 CEP
\searrow Suppose H does not preserve a cartesian decomposition. We show

- If one of G or H is affine then
- Γ is complete graph K_{n} and $\mathrm{G}=[$ affine $]<\mathrm{H}=\operatorname{Alt}(\mathrm{n})$ or $\operatorname{Sym}(\mathrm{n})$ [or one exception $\mathrm{G}=\mathrm{PSL}(2,7)<\mathrm{H}=\mathrm{AGL}(3,2)$]
- The only other possibility is that G, H are both almost simple.
- Then $H=G H_{\alpha}$ is a maximal factorisation and also $H_{\alpha}=G_{\alpha} H_{\alpha \beta}$
- Two pages of examples - giving values for G, H, vertex action, valency

Second application: decide if a permutation group preserves a cartesian decomposition

\geq Given $G<\operatorname{Sym}(X)$. Can we identify $X=Y^{k}$ such that $G \leq \operatorname{Sym}(Y)$ wr Sym(k) with $\mathrm{k}>1$?

- Question underlies O'Nan-Scott Theorem for primitive groups
- Solution needed to decide maximality/inclusions of "quasiprimitive" groups
- More general question. Can $X=Y_{1} \times \ldots \times Y_{k}$ with Y_{i} different sizes
\searrow Easy "normal" example: If say $G=\operatorname{Sym}(\mathrm{Y})$ wr Sym(k) then the cartesian decomposition corresponds to a direct decomposition of $\operatorname{soc}(G)=\operatorname{Alt}(\mathrm{Y})^{\mathrm{k}}$

Not so obvious example.

$v G=M_{12}$ has two classes of subgroups of index 12 [isomorphic to M_{11}]
\pm If A, B are representatives then $G=A B$ so
\searrow the G-coset action on $X:=[G: A \cap B]$ of size 144 preserves a cartesian decomposition $\mathrm{X}=\mathrm{Y} \times \mathrm{Y}$ with $|\mathrm{Y}|=12$
\downarrow So $G<M_{12}$ wr Sym(2)
\searrow This behaviour is unusual but not unique
> 2004 Baddeley, CEP, Schneider determined all transitive actions of simple groups which preserve a cartesian decomposition.

- All on $Y^{2}-2$ individual examples and two families [involving $\mathrm{P}^{+}(8, \mathrm{q})$ and $\mathrm{Sp}(4, \mathrm{q})$]

Links with group factorisations

\searrow Suppose $G<\operatorname{Sym}(X)$ and G has a transitive minimal normal subgroup M

- True for primitive, quasiprimitive, innately transitive groups
\searrow Choose point α in X
\searrow Each cartesian decomposition $Y_{1} \times \ldots \times Y_{k}$ of X preserved by G determines Cartesian Factorisation of M a set of k subgroups K_{1}, \ldots, K_{k} of M such that
- $K_{1} \cap \ldots \cap K_{k}=M_{\alpha}$
- For all $i=1, \ldots, k, M=K_{i}\left(\cap_{j \neq i} K_{j}\right) \quad$ [k factorisations of M]
y 2004 Baddeley, CEP Schneider One-to-one correspondence between the G-invariant cartesian decompositions of X and the cartesian factorisations of M (relative to α)

Examples: G preserves $X=Y_{1} \times \ldots \times Y_{k}$; minimal normal subgroup M

y "Normal" Case:

- $M=T_{1} \times \ldots \times T_{k}$
- let $\alpha=\left(y_{1}, \ldots, y_{k}\right)$ and $L_{i}=\left(T_{i}\right)_{y i}$
- Define cartesian factorisation by
- $K_{1}=L_{1} \times T_{2} \times \ldots \times T_{k}, \ldots, K_{k}=T_{1} \times \ldots \times T_{k-1} \times L_{k}$
\searrow Conditions:
- $\mathrm{K}_{1} \cap \ldots \cap \mathrm{~K}_{\mathrm{k}}=\mathrm{L}_{1} \times \ldots \times \mathrm{L}_{\mathrm{k}}=\mathrm{M}_{\mathrm{a}}$
- and each $M=K_{i}\left(\cap_{j \neq i} K_{j}\right)$ holds

Role of simple group factorisations: one simple example

y T nonabelian simple group with factorisation $\mathrm{T}=\mathrm{AB}$

- Diagonal $D=\{(t, t) \mid t$ in $T\} \quad$ copy of T in $T x T$ a "strip"
- Define $E=\{(t, t) \mid t$ in $A \cap B\}$
\searrow Critical property: $\mathrm{T} \times \mathrm{T}=\mathrm{D}(\mathrm{A} \times \mathrm{B})$
- To write arbitrary (u, v) as $(t, t)(a, b)$
- Express $u^{-1} v=a^{-1} b$ with a in A, b in B and note that $t:=u a^{-1}=v b^{-1}$
- \quad Then $(t, t)(a, b)=\left(u a^{-1}, v^{-1}\right)(a, b)=(u, v)$
\searrow The Example:
- $M=T x T x T x T$
- $K_{1}=A \times B \times D$
- $K_{2}=D \times A \times B$

Set acted on: $X=Y \times Y$ Where $Y=[T x T: E]$
And $\quad \alpha=(E, E)$ in X
\searrow Conditions:

- $K_{1} K_{2}=M$ and $K_{1} \cap K_{2}=E \times E=M_{\alpha}$

Rich theory of cartesian decompositions preserved by groups with a transitive minimal normal subgroup
y Involves

- Cartesian factorisations of characteristically simple groups T^{k}
- Factorisations of characteristically simple groups
v Leads to
- Understanding of subgroup lattice above a (quasi)primitive group
- Tools for studying overgroups of such groups arising as automorphism groups

Summary

\searrow What is known about maximal factorisations of almost simple groups
\searrow Using ONS Theory \& factorisations to

- study graph automorphisms
- Detect if cartesian decompositions preserved
\searrow Third lecture: different kind of application - Cayley graphs

Thank you

