

### Simple Group Factorisations and Applications in Combinatorics: Lecture 2

CHERYL E PRAEGER

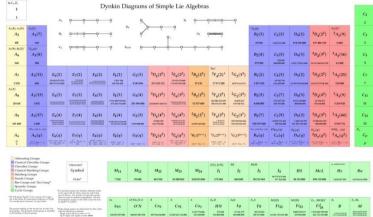
CENTRE FOR THE MATHEMATICS OF SYMMETRY AND COMPUTATION



#### In lecture 1 we saw:

- Substitution Sym(X) and Alt(X) (X finite) required Classifying "Maximal subgroups of Sym(X) and Alt(X)" (X finite) required
  - O'Nan—Scott Theorem for the primitive types
  - Maximal factorisations of all almost simple groups
- Studying symmetric (point-transitive) structures often requires knowledge of full automorphism group
  - Problem: finding overgroups of given transitive groups
  - Solving this: combination of "refined O'Nan—Scott" and almost simple group facrtoisations
- This lecture: a bit about the almost simple factorisations; a start on an using them.

### Remember the kinds of finite simple groups:


### The Periodic Table Of Finite Simple Groups

| C <sub>1</sub> , Z <sub>1</sub>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dy                                              | nkin D   | iagrams             | of Simp                                                 | ole Lie A                                     | lgebras                                                           |                                                     |                                                  |                                                       |                              |                                      |                                               |                                               |                                |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|---------------------|---------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|------------------------------|--------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------|
| 1                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A.,                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | ọ        | ٩                   |                                                         | <i>r</i> 4                                    | <b>∘</b> — •                                                      | <del>ç i ç</del> −                                  |                                                  |                                                       |                              |                                      |                                               |                                               | C2<br>2                        |
| (4), A <sub>1</sub> (5)<br>A <sub>5</sub>                    | A <sub>1</sub> (2)<br>A <sub>1</sub> (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.                         | <del>ç ≓ç</del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | •¢       | , ò                 | <del>,                                    </del>        | 9<br>P+                                       | 62 0                                                              | , <b></b> ?                                         |                                                  | <sup>2</sup> A <sub>1</sub> (4)<br>B <sub>2</sub> (3) | C3(3)                        | D4(2)                                | $^{2}D_{4}(2^{2})$                            | $C_{0}(2)'$<br>$^{2}A_{2}(9)$                 | c,                             |
| 60<br>((9), 81(2)'<br>A6<br>310                              | 358<br><sup>3</sup> G <sub>1</sub> (2)'<br>A <sub>1</sub> (5)<br>801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ¢,                         | <del>ç⇒⊷ç</del> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |          | .ta Q—              | ò                                                       | , o                                           | - ç - ·                                                           | <del>ې م</del> ې                                    |                                                  | 25928<br>B2(4)                                        | C3(5)                        | D4(3)                                | <sup>2</sup> D <sub>4</sub> (3 <sup>2</sup> ) | <sup>2</sup> A <sub>2</sub> (16)              |                                |
| A7                                                           | A1(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E6(2)                      | E7(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E <sub>5</sub> (2)                              | F4(2)    | G <sub>2</sub> (3)  | <sup>3</sup> D <sub>4</sub> (2 <sup>3</sup> )           | <sup>2</sup> E <sub>6</sub> (2 <sup>2</sup> ) | <sup>2</sup> B <sub>2</sub> (2 <sup>3</sup> )                     | <sup>Tm/*</sup><br><sup>2</sup> F <sub>4</sub> (2)' | $^{2}G_{2}(3^{3})$                               | B <sub>3</sub> (2)                                    | C4(3)                        | D3(2)                                | $^{2}D_{3}(2^{2})$                            | <sup>2</sup> A <sub>2</sub> (25)              | C7                             |
| 2520<br>(2)<br>Ag                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>6</sub> (3)         | E <sub>7</sub> (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E <sub>8</sub> (3)                              | F4(3)    | 4200m               | <sup>3</sup> D <sub>4</sub> (3 <sup>3</sup> )           | <sup>2</sup> E <sub>6</sub> (3 <sup>2</sup> ) | <sup>29120</sup><br><sup>2</sup> B <sub>2</sub> (2 <sup>5</sup> ) | <sup>2</sup> F <sub>4</sub> (2 <sup>3</sup> )       | <sup>2</sup> G <sub>2</sub> (3 <sup>5</sup> )    | B2(5)                                                 | C3(7)                        | Da(5)                                | ${}^{2}D_{4}(4^{2})$                          | <sup>2</sup> A <sub>3</sub> (9)               | c <sub>n</sub>                 |
| 20360<br>Ag                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E <sub>6</sub> (4)         | E7(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Es(4)                                           | F4(4)    | 251 5mi nm<br>G2(5) | 30 300 411 300 912                                      | 2E6(4 <sup>2</sup> )                          | 32537688<br>2 <sub>B2</sub> (2 <sup>7</sup> )                     | 2F4(2 <sup>5</sup> )                                | <sup>2</sup> G <sub>2</sub> (3 <sup>7</sup> )    | 4500 000<br>B2(7)                                     | G3(9)                        | D3(3)                                | 2D4(52)                                       | 3265420<br>2 <sub>A2</sub> (64)               | п<br>С1                        |
| 181 440                                                      | White contract the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | -2192022 |                     |                                                         | THE                                           | 34 100 100 400                                                    | 1055                                                | Star Calendaria Sull<br>Sold SuperStational      | 138.297400<br>Particle Partici                        | 10000000                     | 1200112700<br>00300200300<br>0044(e) | 17 687 191256<br>001000000                    | \$315776<br>PSH(9)                            | 13<br>z,                       |
| Α <sub>π</sub><br>#                                          | A DESCRIPTION OF A DESC |                            | $E_7(q)$<br>af $n \frac{h}{m} \sigma^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Es(q)<br>58883                                  | F4(q)    | G2(q)               | <sup>3</sup> D <sub>4</sub> (q <sup>3</sup> )<br>9525-2 | 2E6(q2)<br>王武王                                | 2B2(22+1)                                                         | ${}^{2}F_{4}(2^{2n+1})$<br>${}^{2}F_{4}(2^{2n+1})$  | <sup>1</sup> G <sub>2</sub> (3 <sup>2n+1</sup> ) | $B_{\mathfrak{m}}(q)$                                 | Cn(q)                        | $D_{\mathcal{R}}(q)$                 | $^{2}D_{\mu}(q^{2})$                          | <sup>2</sup> A <sub>n</sub> (q <sup>2</sup> ) | - Cy<br>7                      |
| Alternatio                                                   | ng Groups<br>Chevalley Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | _        |                     |                                                         | _                                             |                                                                   |                                                     |                                                  |                                                       |                              |                                      | _                                             |                                               |                                |
| Chevalley                                                    | Groups<br>Steinberg Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | Alternates <sup>4</sup><br>Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | M11      | M <sub>12</sub>     | M22                                                     | M <sub>23</sub>                               | M24                                                               | /(1), /(11)<br>J1                                   | ""<br>12                                         | нтм<br>13                                             | 14                           | нs                                   | McL                                           | Не                                            | Ru                             |
| Sanuki Gr<br>Ree Group<br>Sporadic O<br>Cyclic Gre           | ps and Tits Group*<br>Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Order <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | 7.920    | 95940               | 443 328                                                 | 10 200/940                                    | 244823088                                                         | 175 568                                             | 604.900                                          | 50232968                                              | 64775 571 848<br>677 542 546 | 44.153.000                           | 818 128 880                                   | 100100-308                                    | 125 104 144 10                 |
| Disgrap <sup>1</sup> V <sub>4</sub> (2)<br>h Baciliation D - | oups<br>of a cot a gauge of Lie type<br>associate coloring of Va<br>outery Lie type states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to the exp<br>stary by the | In proops and busiles,<br>to tell are other ensur-<br>trees. For specific survey<br>and it include to many<br>tree appendix in the<br>second second second<br>in days of the | to atom Rany<br>penalty groups<br>from All such | Ke .     | 0'NE0-8             | a                                                       | a.                                            | 4                                                                 | ILD.                                                | Igi                                              | I <sub>b</sub> T                                      | M(22)                        | M(23)                                | E <sub>111</sub> M(24)'                       | f <sub>i</sub>                                | F <sub>11</sub> M <sub>5</sub> |
| groupe starting a<br>please. The spe<br>is building of fast  | an far neamit son an the do<br>reads: someti genige in scieda<br>still genige.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and with for 5<br>Re(g) of | (k. geneges an observe<br>dimetry, complexes<br>of (f. (g) to q util, 4 (<br>(2) and Ap(6) of order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Suz      | O'N                 | Coz                                                     | Co2                                           | CO1                                                               | HN 271439                                           | Ly                                               | Th<br>mostates                                        | Figg                         | Fi23                                 | Fi24                                          | B                                             | M                              |

#### Courtesy: Ivan Andrus 2012

### Alternating and symmetric groups G = Alt(n) and Sym(n)

- $\square$  G = AB (and neither A not B contains Alt(n))
  - A, say, satisfies  $Alt(k) \times Alt(n-k) \le A \le Sym(k) \times Sym(n-k)$
  - While B is k-homogeneous (transitive on k-subsets)
  - Where k = 1, 2, 3, 4, or 5
  - [or some extra cases when n = 6, 8, and 10]
- Somments 2
  - 1980 Wiegold & Williamson classified those with  $A \cap B = 1$
  - k-homogeneous groups known explicitly [using simple group classn.]



Courtesy: Ivan Andrus 2012

1986 Gentchev if both A, B simple N 1990 Liebeck, CEP, Saxl if both A and B maximal N

Sporadic almost simple groups

 $\square$  Sporadic almost simple group G = AB

- Generous help from Rob Wilson
- ≥ 2006 Giudici

all of them

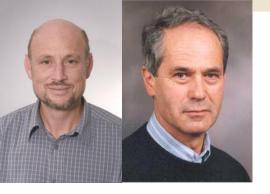
[J. Algebra]

Comments: Mathieu groups have many; some (e.g. Monster) have none **N** 



**Exceptional Lie type groups G** 

- $\mathbf{\forall} \quad \mathbf{G} = \mathbf{A}\mathbf{B}$
- ע 1987 Herring Liebeck Saxl
  - Only groups factorisable G are  $G_2(3^c)$ ,  $G_2(4)$  and  $F_4(2^c)$


↘ This left the classical groups to be dealt with [most difficult case!]

|                                                                              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | Suz                | 0'N              | Cos                | Co <sub>2</sub>       | Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HN                                            | Ly                      | Th                                 | Fi22                             | Fi23                   | Fi'24                 | В                                             | M                                |                                 |
|------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|------------------|--------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|------------------------------------|----------------------------------|------------------------|-----------------------|-----------------------------------------------|----------------------------------|---------------------------------|
| Da Singeng- <sup>1</sup> 640<br>hat is Re States B o<br>T is availed growing | l" books group of his<br>mercelate adaptasy of<br>mercel Lib type data | 1700 100 10 A.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tanta ha parti sara<br>anti a tana a tanta<br>fita a gapar di Ba tala<br>1 h d <sub>a</sub> (P)             | terre di mit       | .Ba              | 0'N8,0-8           | 4                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                             | F <sub>k</sub> D        | 144                                | F <sub>b</sub> .E                | M(22)                  | .M(23)                | Fr., M(28)'                                   | I,                               | F <sub>i</sub> , M <sub>i</sub> |
| Cyclic Ge                                                                    |                                                                        | The spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the groups and baseline,<br>per life des silves ressou<br>some, for galeite source<br>and a baseline tennes | obcurs talati      |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         |                                    |                                  |                        |                       |                                               |                                  |                                 |
| Tiperadie 1                                                                  |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         |                                    |                                  |                        |                       |                                               |                                  |                                 |
| E Surski G                                                                   | nage                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order                                                                                                       |                    | 7.908            | 95.040             | 441 520               | 10 200 740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 244.825.060                                   | 175 568                 | 405 500                            | 50332768                         | An 1710 1710 1000      | 44.3122000            | 810 125-000                                   | 14991007208                      | 10710418                        |
| Classical :                                                                  | Suinburg Gazage<br>Groups                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Symbol                                                                                                      |                    | M11              | M12                | M22                   | M23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M24                                           | h                       | h                                  | Is                               | 1a                     | HS                    | McL                                           | He                               | Ru                              |
| Chevalley                                                                    |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alternates                                                                                                  |                    |                  |                    |                       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                                          | N(1), H(11)             |                                    |                                  |                        |                       | 10070                                         |                                  | -                               |
| Classical i                                                                  | Chevalley Group                                                        | ÷ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |                    |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         | -                                  | HIM                              |                        |                       |                                               | 1.000.0718                       |                                 |
| Alternatio                                                                   |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         |                                    |                                  |                        |                       |                                               |                                  |                                 |
|                                                                              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second second                         |                         |                                    | and the second second            |                        | And the second second |                                               |                                  |                                 |
| 1                                                                            | star .                                                                 | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at a for a                                                                                                  |                    | 2.2.2            | Carponetrie        | 2525-2                | T. State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distance.                                     | Acres 1                 | director.                          | Sinter-u                         | Sale .                 | STILL .               | *1207 Er                                      | All Berry                        |                                 |
| Aa                                                                           | $A_{\pi}(q)$                                                           | $E_6(q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $E_7(q)$                                                                                                    | $E_8(q)$           | $F_4(q)$         | $G_2(q)$           | ${}^{3}D_{4}(q^{3})$  | ${}^{2}E_{6}(q^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{3}B_{\sharp}(2^{2n+1})$                    | $^2F_{\pm}(2^{2\nu+1})$ | ${}^{1}G_{j}(\mathfrak{Z}^{la+1})$ | $B_n(q)$                         | $C_n(q)$               | $D_{\pi}(q)$          | ${}^{2}D_{n}(q^{2})$                          | ${}^{2}A_{\mu}(q^{2})$           |                                 |
|                                                                              | Marriel American                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         |                                    | ·*****                           | $Pip_{2r}(q)$          | 06(4)                 | $O_{in}(q)$                                   | #542(4)                          | z,                              |
| 191 680                                                                      | 2.848                                                                  | - Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISOHELLE                                                                                                    | 间周期日               | Property Streams | 1001000.000        | +17942108             | Conception in the local division in the loca | 310030540                                     |                         | the second last                    | 131297000                        | Statement of the state |                       |                                               | \$ 513 776                       |                                 |
| A9                                                                           | A1(17)                                                                 | E <sub>6</sub> (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E <sub>7</sub> (4)                                                                                          | E <sub>5</sub> (4) | F4(4)            | G <sub>2</sub> (5) | 3D4(43)               | ${}^{2}E_{b}(4^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>2</sup> B <sub>2</sub> (2 <sup>7</sup> ) | ${}^{2}F_{4}(2^{5})$    | 2G2(37)                            | B <sub>2</sub> (7)               | C3(9)                  | D3(3)                 | <sup>2</sup> D <sub>4</sub> (5 <sup>2</sup> ) | <sup>2</sup> A <sub>2</sub> (64) |                                 |
| 100                                                                          |                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 202                                                                                                         | 10000              | 10000            | Sec. 10            | 300 113               | 20.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.000                                        | 20.00                   | 20.021                             | 227622                           | 1000                   | 1000000               | 200 1020                                      |                                  |                                 |
| 20166                                                                        | 1045                                                                   | STREET, STREET |                                                                                                             | animati .          | #75.04078.0 WW   | 251 276 888        | 38 hold with how with | -202202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.527 6480                                   | Shi blanh war           | 458.hell 512                       | 4 440 000                        | MUTCHE                 | -                     | And Address                                   | 9.263/920                        |                                 |
|                                                                              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    | STOLANT TALANA   |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | Taxant Straw            | *****                              |                                  | 171 177 749            |                       | 17.576.571                                    |                                  |                                 |
| As                                                                           | A1(13)                                                                 | $E_6(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E <sub>7</sub> (3)                                                                                          | E <sub>8</sub> (3) | F4(3)            | G2(4)              | 3D4(33)               | $2E_{4}(3^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2B.(25)                                       | $2F_4(2^3)$             | 2G2(35)                            | B2(5)                            | G(7)                   | D4(5)                 | $2D_{4}(4^{2})$                               | 2A3(9)                           |                                 |
| 1900                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  | 1145100            | manu                  | THE REAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10100                                         | 17471300                | 101210102                          | 1 4 1 1 1 1                      |                        | To be by a branch     | Conception and                                | 120,000                          |                                 |
| 1100                                                                         |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE                                                                                                         |                    | S NIT 104        | 4.245.656          | 211341342             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24120                                         | 17471.000               | -                                  |                                  |                        | -                     |                                               | 124-080                          |                                 |
| A7                                                                           | A1(11)                                                                 | $E_{6}(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E <sub>7</sub> (2)                                                                                          | E <sub>6</sub> (2) | F4(2)            | G2(3)              | ${}^{3}D_{4}(2^{3})$  | ${}^{2}E_{6}(2^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{2}B_{2}(2^{3})$                            | ${}^{2}F_{4}(2)'$       | ${}^{2}G_{2}(3^{3})$               | B <sub>3</sub> (2)               | C4(3)                  | D3(2)                 | $2D_{s}(2^{2})$                               | 2A2(25)                          |                                 |
|                                                                              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  |                    | 1                     | 17. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | Tm*                     |                                    |                                  |                        |                       |                                               |                                  |                                 |
| 340                                                                          | 104                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         |                                    | -179.200                         | 229.540                |                       |                                               | 02.000                           |                                 |
| $A_6$                                                                        | A <sub>1</sub> (8)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         |                                    | $B_2(4)$                         | C3(5)                  | $D_4(3)$              | $^{2}D_{4}(3^{2})$                            | $^{2}A_{2}(16)$                  |                                 |
| h.(4), H <sub>2</sub> (2)'                                                   | ${}^{8}G_{3}(0)^{*}$                                                   | C <sub>A</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | °==                                                                                                         |                    | 0 E              | 0                  | - <u></u> ,           | • <del>•</del> •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                             | • <u>•</u> •            |                                    |                                  |                        |                       |                                               |                                  |                                 |
| 60                                                                           | 365                                                                    | 10.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                             |                    |                  |                    |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                         |                                    | 25.928                           | 40000300               | 171152-000            | 197.484.728                                   | 6.049                            |                                 |
| A5                                                                           | A <sub>1</sub> (7)                                                     | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 - 0-                                                                                                      |                    | -0               | å                  |                       | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62                                            |                         |                                    | B <sub>2</sub> (3)               | C3(3)                  | $D_{4}(2)$            | ${}^{2}D_{4}(2^{2})$                          | ${}^{2}A_{2}(9)$                 |                                 |
| h,(4), A <sub>1</sub> (5)                                                    | A <sub>1</sub> (2)                                                     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                             |                    | 1                | • /                | p                     | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               |                         |                                    | <sup>2</sup> (6 <sub>1</sub> (4) |                        |                       |                                               | 6,(2)'                           |                                 |
|                                                                              |                                                                        | A.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ° ?                                                                                                         | - <u> </u>         | <b>o</b>         | 2                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ç                                             |                         | - <u></u> 9                        | -                                |                        |                       |                                               |                                  |                                 |
| 1                                                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2                                                                                                         | -                  | 121              | 127                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120-12                                        |                         | 121                                |                                  |                        |                       |                                               |                                  |                                 |
| 1                                                                            |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             | Dy                 |                  |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                         |                                    |                                  |                        |                       |                                               |                                  |                                 |
|                                                                              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                             |                    |                  | agrama             | of Sim                | ple Lie A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | loobra                                        | 6 C                     |                                    |                                  |                        |                       |                                               |                                  | _                               |

found all of them

The Periodic Table Of Finite Simple Groups

Courtesy: Ivan Andrus 2012



**Classical Lie type groups G** 

- The simple groups PSL, PSp, PSU, PΩ<sup>+</sup>, PΩ<sup>-</sup>, PΩ<sup>o</sup>
- $\square$  G = AB
- ↘ 1990 Liebeck CEP SaxI
  - All families of groups factorise except odd dimensional PSU
  - Five pages of tables -- published in AMS Memoir
- ☑ Why so hard? What more known?
- ≥ 2010 Liebeck CEP Saxl

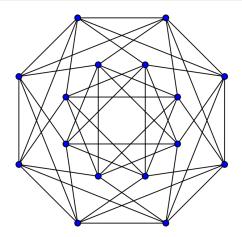
A maximal and  $A \cap B = 1$ 

found all maximal factorisations

[exact factorisations]

Just really hard – complete classification not in sight

| 1                                                 | Dynkin Diagrams of Simple Lie Algebras                                    |                    |                  |                    |              |            |                                               |                      |                                                 |                                                               |                                                  |                                                       |                               |                             |                                               |                                                      | C <sub>2</sub> |
|---------------------------------------------------|---------------------------------------------------------------------------|--------------------|------------------|--------------------|--------------|------------|-----------------------------------------------|----------------------|-------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------|-----------------------------|-----------------------------------------------|------------------------------------------------------|----------------|
| 1                                                 |                                                                           | A.,                | °                |                    | 0            | 2          |                                               | Fa                   | • <u>•</u> •••                                  | <del>~ ~ ~</del>                                              |                                                  |                                                       |                               |                             |                                               |                                                      | 2              |
| (4), A <sub>1</sub> (9)<br>A <sub>5</sub><br>60   | A <sub>1</sub> (2)<br>A <sub>1</sub> (7)                                  |                    | <del>ç—</del> q- |                    | <u>o</u>     | ~          | <u> </u>                                      | •<br>•               | 61                                              | <del>, ,</del>                                                |                                                  | <sup>2</sup> A <sub>1</sub> (8)<br>B <sub>2</sub> (3) | C3(3)                         | D4(2)                       | <sup>2</sup> D <sub>4</sub> (2 <sup>2</sup> ) | <sup>6,(2)'</sup><br><sup>2</sup> A <sub>2</sub> (9) | 63             |
| (*), 8 <sub>1</sub> (2)'<br>A <sub>6</sub><br>300 | <sup>2</sup> G <sub>1</sub> (3) <sup>2</sup><br>A <sub>1</sub> (8)<br>304 | ¢.,                | <del>o ⇒ o</del> | Ŷ                  | <b>ç</b> - 6 | м <u>ф</u> | - ç i                                         | <u>ې</u>             | °.                                              | <u>ه</u>                                                      |                                                  | B2(4)                                                 | C3(5)                         | D4(3)                       | <sup>2</sup> D <sub>4</sub> (3 <sup>2</sup> ) | <sup>2</sup> A <sub>2</sub> (16)                     | c,<br>,        |
| A7                                                | A1(11)                                                                    | E6(2)              | E7(2)            | E <sub>5</sub> (2) | F4(2)        | G2(3)      | <sup>3</sup> D <sub>4</sub> (2 <sup>3</sup> ) | 2E6(22)              | <sup>2</sup> B <sub>2</sub> (2 <sup>3</sup> )   | <sup>7m<sup>-</sup></sup><br><sup>2</sup> F <sub>4</sub> (2)' | <sup>2</sup> G <sub>2</sub> (3 <sup>3</sup> )    | B3(2)                                                 | C4(3)                         | D5(2)                       | <sup>2</sup> D <sub>5</sub> (2 <sup>2</sup> ) | <sup>2</sup> A <sub>2</sub> (25)                     | C7             |
| (2)<br>Ag<br>20140                                | A1(13)                                                                    | E <sub>6</sub> (3) | E7(3)            | Eg(3)              | Fa(3)        | G2(4)      | <sup>3</sup> D <sub>4</sub> (3 <sup>5</sup> ) | 2E6(3 <sup>2</sup> ) | 2B2(25)                                         | <sup>2</sup> F <sub>4</sub> (2 <sup>3</sup> )                 | 2G2(35)                                          | B2(5)                                                 | C3(7)                         | D4(5)                       | 2D4(42)                                       | 2 <sub>A3</sub> (9)                                  | C1<br>11       |
| A9                                                | A1(17)                                                                    | E6(4)              | E7(4)            | Eg(4)              | F4(4)        | G2(5)      | 3D4(43)                                       | 2E8(42)              | <sup>2</sup> B <sub>2</sub> (2 <sup>7</sup> )   | 2F4(25)                                                       | <sup>2</sup> G <sub>2</sub> (3 <sup>7</sup> )    | B2(7)                                                 | C3(9)                         | D3(3)                       | <sup>2</sup> D <sub>4</sub> (5 <sup>2</sup> ) | <sup>2</sup> A <sub>2</sub> (64)                     | C1             |
| A <sub>a</sub>                                    | A <sub>#</sub> (q)                                                        | E6(q)              | $E_7(q)$         | L <sub>8</sub> (q) | F4(q)        | G2(q)      | <sup>3</sup> D <sub>4</sub> (q <sup>3</sup> ) | 2E6(q2)              | <sup>2</sup> B <sub>2</sub> (2 <sup>1++</sup> ) | ${}^{3}F_{4}(2^{2n+1})$<br>${}^{2}F_{4}(2^{2n+1})$            | <sup>2</sup> G <sub>2</sub> (3 <sup>(n+1</sup> ) | Ba(q)                                                 | $\frac{Pip_{W}(q)}{C_{H}(q)}$ | 05(e)<br>D <sub>R</sub> (q) | $O_{n}(q) = 2D_{n}(q^{2})$                    | PSH(q)<br>2A <sub>0</sub> (q <sup>2</sup> )          | z, c,          |

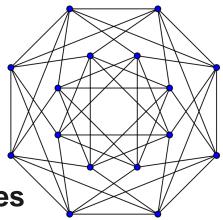

The Periodic Table Of Finite Simple Groups

Courtesy: Ivan Andrus 2012

### **Applications of factorisations**

- rightarrow Recall: if G < H < Sym(X) then G is transitive if and only if H<sub>α</sub>G = H
- Often use factorisations to explore existence of larger groups preserving a point-transitive structure.
- Algebraic example": Maximal subgroup problem. Deciding if an almost simple primitive group is maximal

↘ We consider two applications: to graphs and cartesian dcompositions




Let  $\Gamma$  be a graph and G < Aut( $\Gamma$ ) be transitive on arcs and primitive on vertices [arcs: "directed edges"]

- **I**s it possible for Aut( $\Gamma$ ) to be "very much bigger" than G?
- Sould we have  $G < H \le Aut(\Gamma)$  and G, H have different socles?
- Surely yes, sometimes.

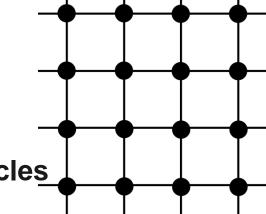
Socle is the subgroup generated by all the minimal normal subgroups

- Solution Example:  $\Gamma$  the "triangle graph" with vertices pairs from {1,2,...,n} and edges {A, B} if the pairs A, B meet. Aut( $\Gamma$ ) = Sym(n)
  - Take G any 3-transitive subgroup of Sym(n); G is arc-transitive and usually vertex-primitive
  - E.g. If n=q+1 then G = PGL(2,q) < Sym(q+1)
  - E.g.  $M_{11} < M_{12} < Sym(12)$



# G < H $\leq$ Aut( $\Gamma$ ) with G transitive on arcs and frimitive on vertices, and G, H with different socles

- ➤ How could we classify them all?
- ❑ Understand what happens in the groups: let X = set of vertices.
- ↘ Then the set of arcs (directed edges) is an orbit for both G and H in X x X
- ${\bf Y}$  Also the vertex stabilisers:  $G_{\alpha}$  maximal in G, and  $H_{\alpha}$  maximal in H
- And we have factorisations:  $H = G H_{\alpha}$  and for an arc ( $\alpha$ ,  $\beta$ ),  $H_{\alpha} = G_{\alpha} H_{\alpha\beta}$
- ↘ Tools/Methods: O'Nan—Scott Theorem and factorisations
- ▶ Lead first to source of generic examples: .....


G < H  $\leq$  Aut( $\Gamma$ ) with G transitive on arcs and primitive on vertices, and G, H with different socles

- ▷ ONS-product-type: H preserves cartesian decomposition  $X = Y^k$  with k > 1
  - Then H < Sym(Y) wr Sym(k) in "product action"</li>
  - Each of G, H "induces" a primitive  $G_0 < H_0 < Sym(Y)$
  - Gives H < H<sub>0</sub> wr Sym(k) and G < G<sub>0</sub> wr Sym(k)

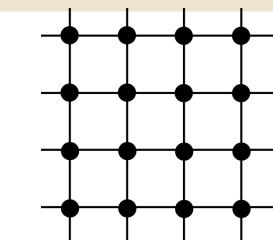
We give a construction: A cartesian product of graphs

- Each example  $\Gamma_0$  with  $G_0 < H_0 < Aut(\Gamma_0)$  lifts to an example  $\Gamma$  for G < H
- With soc(G) = soc(G<sub>0</sub>)<sup>k</sup> and soc(H) = soc(H<sub>0</sub>)<sup>k</sup>

How typical are these examples?



## $G < H \le Aut(\Gamma)$ with G transitive on arcs and - primitive on vertices, and G, H with different socles


Analysis tricky: if  $H < H_0$  wr Sym(k) and  $X = Y^k$  with k > 1 then

- Either soc(G) = soc(G<sub>0</sub>)<sup>k</sup> and soc(H) = soc(H<sub>0</sub>)<sup>k</sup> and we find all possibilities for G<sub>0</sub> and H<sub>0</sub>
- or ~3 exceptional cases: e.g. G = Sym(6).2 < H = Sym(6) wr Sym(2) [other two have  $G_0 = M_{12}$  and  $G_0 = Sp(4,4)$ ]

Unexpected cartesian decompositions preserved by simple groups – more on this later

# $G < H \le Aut(\Gamma)$ with G transitive on arcs and primitive on vertices, and G, H with different socles

- Lot of hard work dealing with all other ONS-types for H:
- ▶ Tool: "Primitive Inclusions": classification of possible ONS-types for (G, H) 1990 CEP
- Suppose H does not preserve a cartesian decomposition. We show
  - If one of G or H is affine then
    - $\Gamma$  is complete graph K<sub>n</sub> and G = [affine] < H = Alt(n) or Sym(n) [or one exception G = PSL(2,7) < H = AGL(3,2)]
  - The only other possibility is that G, H are both almost simple.
    - Then  $H = G H_{\alpha}$  is a maximal factorisation and also  $H_{\alpha} = G_{\alpha} H_{\alpha\beta}$
    - Two pages of examples giving values for G, H, vertex action, valency



Second application: decide if a permutation group preserves a cartesian decomposition

- Since  $A = A^k$  Since  $A^k$  Since  $A = A^k$  Since  $A^k$  Since  $A = A^k$  Since  $A^k$  Since A^k Since A^k Si
  - Question underlies O'Nan—Scott Theorem for primitive groups
  - Solution needed to decide maximality/inclusions of "quasiprimitive" groups
  - More general question. Can  $X = Y_1 \times ... \times Y_k$  with  $Y_i$  different sizes
- Easy "normal" example: If say G = Sym(Y) wr Sym(k) then the cartesian decomposition corresponds to a direct decomposition of soc(G) = Alt(Y)<sup>k</sup>

### Not so obvious example.

- $\square$  G = M<sub>12</sub> has two classes of subgroups of index 12 [isomorphic to M<sub>11</sub>]
- $\square$  If A, B are representatives then G = AB so
- ▶ the G-coset action on X:= [G : A  $\cap$ B ] of size 144 preserves a cartesian decomposition X = Y x Y with |Y|=12
- $\square$  So G < M<sub>12</sub> wr Sym(2)
- ↘ This behaviour is unusual but not unique
- ▶ 2004 Baddeley, CEP, Schneider determined all transitive actions of simple groups which preserve a cartesian decomposition.
  - All on Y<sup>2</sup> 2 individual examples and two families [involving PΩ<sup>+</sup>(8,q) and Sp(4,q)]

### Links with group factorisations

- Suppose G < Sym(X) and G has a transitive minimal normal subgroup M
  - True for primitive, quasiprimitive, innately transitive groups
- $\checkmark$  Choose point  $\alpha$  in X
- ▶ Each cartesian decomposition  $Y_1 \times ... \times Y_k$  of X preserved by G determines Cartesian Factorisation of M a set of k subgroups  $K_1,...,K_k$  of M such that

• 
$$K_1 \cap \ldots \cap K_k = M_{\alpha}$$

- For all i=1,...,k,  $M = K_i ( \bigcap_{j \neq i} K_j )$  [k factorisations of M]
- 2004 Baddeley, CEP Schneider One-to-one correspondence between the G-invariant cartesian decompositions of X and the cartesian factorisations of M (relative to α)

#### Examples: G preserves $X = Y_1 \times ... \times Y_k$ ; minimal normal subgroup M

- ↘ "Normal" Case:
  - $M = T_1 \times \dots \times T_k$
  - let  $\alpha = (y_1, \dots, y_k)$  and  $L_i = (T_i)_{yi}$
  - Define cartesian factorisation by
  - $K_1 = L_1 \times T_2 \times ... \times T_k$ , ...,  $K_k = T_1 \times ... \times T_{k-1} \times L_k$
- ↘ Conditions:
  - $K_1 \cap \ldots \cap K_k = L_1 x \ldots x L_k = M_{\alpha}$
  - and each  $M = K_i ( \bigcap_{j \neq i} K_j )$  holds

### Role of simple group factorisations: one simple example

- $\checkmark$  T nonabelian simple group with factorisation T = AB
  - Diagonal D = { (t,t) | t in T } copy of T in T x T a "strip"
  - Define  $E = \{ (t, t) | t \text{ in } A \cap B \}$
- $\square$  Critical property: T x T = D (A x B)
  - To write arbitrary (u,v) as (t,t)(a,b)
  - Express  $u^{-1}v = a^{-1}b$  with a in A, b in B and note that  $t := ua^{-1} = vb^{-1}$
  - Then  $(t, t)(a, b) = (ua^{-1}, vb^{-1})(a,b) = (u,v)$
- ▶ The Example:
  - $M = T \times T \times T \times T$
  - $K_1 = A \times B \times D$
  - $K_2 = D \times A \times B$
- ↘ Conditions:
  - $K_1 K_2 = M$  and  $K_1 \cap K_2 = E \times E = M_{\alpha}$

Set acted on:  $X = Y \times Y$ Where Y = [TxT : E]And  $\alpha = (E, E)$  in X

### Rich theory of cartesian decompositions preserved by groups with a transitive minimal normal subgroup

- Involves צ
  - Cartesian factorisations of characteristically simple groups T<sup>k</sup>
  - Factorisations of characteristically simple groups
- Leads to
  - Understanding of subgroup lattice above a (quasi)primitive group
  - Tools for studying overgroups of such groups arising as automorphism groups

### Summary

- ↘ What is known about maximal factorisations of almost simple groups
- ❑ Using ONS Theory & factorisations to
  - study graph automorphisms
  - Detect if cartesian decompositions preserved
- ▶ **Third lecture:** different kind of application Cayley graphs



### Thank you



Photo. Courtesy: Joan Costa joancostaphoto.com

Γhe University of Western Australia