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Group products and factorisations  

 Group G and proper subgroups A, B such that  G=AB 

 

 Interesting contrasts between construction and decomposition 

 

 Well known constructions: 

 

 Direct product G = A x B where both A, B normal in G and  A  B = 1 

 

 Semidirect product G = A.B where A normal in G and  A  B = 1 

 

 “General product”  G = A.B where A  B = 1 [B H Neumann, 1935] 
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A few words about “general products”: G= AB, with A  B = 1 

 Bernhard Neumann (1935) recognised interpretation 

 

• G acting on coset space [G:A] with B a regular subgroup  

 

 Later rediscovered and called Zappa—Redei—Szep products 

 But already occurred in de Seguier’s book 1904 

 

 2014  Angore & Militaru  “bicrossed product” construction for these general 

products 
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A few words about “general products”: G= AB, with A  B = 1 

 Bernhard Neumann (1935) recognised interpretation 

 

• G acting on coset space [G:A] with B a regular subgroup  

 

 Coset space:  [G:A]  =  {  Ag  |  g in G  } 

 G-action:  x in G maps  Ag  to  Agx   by “right multiplication” 

 

 B regular: B is transitive  (each coset of the form Ab for some b in B)  

 &  only the identity of B fixes any coset  (Agb=Ag iff b=1) 
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Why factorisations?  Why simple groups? 

 

 

Simple group factorisations:   

• What is known?  

• How applied? 

 

 

If extra time then 

• Different kinds of factorisations 
Courtesy: Ivan Andrus 2012  

https://irandrus.files.wordpress.com/2012/06/periodic-table-of-groups.pdf
https://irandrus.files.wordpress.com/2012/06/periodic-table-of-groups.pdf
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Why factorisations? 

 Example  Study   “symmetric”   “structures”    X    in which all “points” are 

“equivalent” under “structure-preserving maps” 

 

 

Structure X 

Graph 

Linear space 

Group 
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“Symmetric” will mean:  

all “points” of X “equivalent” under “structure-preserving maps”   

 “Points”?   “Structure-preserving maps”?  

 

 Structure X Points Maps 

Graph Vertices, or edges Edge-preserving 

permutations of 

vertices 

Linear space Points or lines Line-preserving 

permutations of 

points 

Group Involutions (x2=1) Group 

automorphisms 
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“Symmetric” will mean:  

all “points” of X “equivalent” under “structure-preserving maps”   

 Automorphism group:   Aut(X) = {  structure-preserving maps } 

 

 “Equivalent”: Aut(X)  transitive on points:  for all points  α,  β  there exists  h  

in Aut(X)  such that    αh = β    (h maps α to β) 

 

 Problem:  Have found G < Aut(X), G transitive on points of X,                  

how to decide if G = Aut(X)? 

 

 Use fact from theory of group actions: all transitive group actions 

“permutationally isomorphic” to “coset actions” 
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Coset actions?  We have G < Aut(X) with G transitive  

 Choose a point of X     α   

 Consider the stabiliser of α in H = Aut(X)  -  call it Hα    

 

 Identify “points of X”  with  “cosets of   Hα”    i.e. with  [ H : Hα ] 

• α    corresponds to  Hα  

• αh    corresponds to  Hα h   for each h in Aut(X) 

 

 

 Right multiplication action on cosets: for g in H 

• g maps   αh   to   αhg   corresponds to  

• g maps   Hα h  to  Hα hg 

Well defined? 

Yes and bijective since 

•  Hα h  =  Hα g 

• iff  hg-1 in  Hα  

• iff αh  = αg  

Since G transitive 

does not matter  

which point chosen 
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Problem:  Have  G < H  =  Aut(X) with G transitive how to decide if 

G = H? 

 G transitive (using coset action)  means: { Hα g  |  g in G }  =  all the cosets 

 

 Equivalently:  factorisation  Hα G = H  

 

 So if G < H then    G is transitive   if and only if   Hα G = H   

 

 

 Studying whether G = Aut(X) closely linked to “searching for factorisations” 

 



The University of Western Australia 

Why simple group factorisations?   Since …. 

 Early studies focused on questions like:  Given G=AB and certain properties 

of A and B, does G inherit similar properties? 

 

 1911  W. Burnside’s paqb-Theorem  - could be interpreted …. 

 1955  Noboru Ito’s famous theorem:  A, B abelian implies derived group 

G’  is abelian and G is metabelian 

 1958, 1961  Wielandt & Kegel – A, B nilpotent implies G soluble  
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Why simple groups?  

[when studying factorisations] 

 Classifying the finite simple groups 

 

“one of the greatest achievements  

of twentieth century mathematics”  
[From 2008 Abel Prize citation for J. G. Thompson and Jacques Tits] 

 

 Although known “by name” even simply stated problems remain open: 

 

What do all the largest (maximal) subgroups of the simple groups look like? 

 

 

“Periodic table” depicts simple groups:  columns are infinite families, bottom green 
rows are sporadic simple groups 

 

Courtesy: Ivan Andrus 2012  

https://irandrus.files.wordpress.com/2012/06/periodic-table-of-groups.pdf
https://irandrus.files.wordpress.com/2012/06/periodic-table-of-groups.pdf


The University of Western Australia 

A closer look “for fun” 

Courtesy: Ivan Andrus 2012  

https://irandrus.files.wordpress.com/2012/06/periodic-table-of-groups.pdf
https://irandrus.files.wordpress.com/2012/06/periodic-table-of-groups.pdf
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Alternating groups An: an infinite family of simple groups 

 1980  Start with H = Alt(n) or Sym(n) – find all maximal subgroups G    

 By 1986 some cases solved 

• 1983  Guralnick  n prime power 

• 1985  Liebeck & Saxl  n=kp with p prime and k < p 

• 1985, 87 Kantor, Liebeck & Saxl  n odd 

Left hand column of periodic table 

Smallest A5 symmetry group of several small viruses 
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Alternating groups An: an infinite family of simple groups 

 1990 Liebeck, CEP, Saxl: Reduced the problem of classifying maximal 
subgroups of simple groups An 

  

 To a problem involving all simple groups: 

 

Classify all factorisations  S=AB of all simple groups S  

with A, B maximal subgroups of S.  

  

 Solution occupies a research monograph:   useful for many applications 

 

 Will try to explain where this reduction comes from and how it can be used 

Left hand column of periodic table 

Smallest A5 symmetry group of several small viruses 
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Maximal subgroups G of H = Sym(X) or Alt(X) where X = { 1, 2, … , n } 

 For simplicity take H = Sym(X), and G < H  [maximal] 

 G is a permutation group on X  -  analyse properties of the G-action 

 

 G intransitive on X means G preserves a proper subset Y of X  

 So G contained in the largest such group  Sym(Y) x Sym(X\Y) 

 Question then is: when is  Sym(Y) x Sym(X\Y)  maximal in H? 

 

 Answer is:  almost always maximal - exception when 2.|Y| = n  

 [when swapping Y and X\Y gives a larger subgroup] 

 

 This gives one “type” of maximal subgroup  

 And in all other cases G is transitive on X 

 

 

Really need to know maximal subgroups  

of “almost simple” groups H where H  

between simple group S and Aut(S)  
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Maximal subgroups G of H = Sym(X) where X = { 1, 2, … , n } 

 Take analysis further  so G transitive on X   Next case: 

 

 G imprimitive on X means G preserves a nontrivial partition P of X  

 So G contained in the largest such group  Stab(P) = Sym(Y)  wr Sym(r) 

 Question: when is  Stab(P) maximal in H? 

 

 Answer:      Stab(P) is always maximal  

 [a tiny exception when H = Alt(8) with StabH(P) contained in an affine group AGL(3,2)]  

 

 This gives second “type” of maximal subgroup  

 And in all other cases G is primitive on X – G preserves no nontrivial partitions 

 Equivalently stabiliser Gα is maximal in G 

 

 

 r equal-sized parts, permuted by G 

Y 
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Maximal subgroups G of H = Sym(X) where X = { 1, 2, … , n } 

 Analysing the primitive groups G in a similar manner  

 

 One of the first initiatives involving group actions following the simple group 
classification. First done independently by Michael O’Nan and Leonard Scott 

 

 Original formulation of “O’Nan—Scott Theorem” 

 Description of (primitive hopefully maximal) subgroups G  of Sym(X) of Alt(X) 

 

 Affine type:      X = finite vector space and  G = AGL(X) 

 Diagonal type: maximal of this type  Sk.(Out(S) x Sym(k))  where S simple, k > 1 

 Product type:   maximal of this type stabilisers of cartesian decompositions of X=Yk 

 Almost simple type:  S ≤  G  ≤  Aut(S) 

 

 Big Question: if G is maximal of its ONS-type when is G maximal in Sym(X) or Alt(X)? 

 

O’Nan—Scott theory is the 

“post-classification standard” 

for analysing finite group actions 
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Solving the Question: if G is maximal of its ONS-type when is 

G maximal in Sym(X) or Alt(X)? 

 Affine type:    X = finite vector space and  G = AGL(X) 

 Diagonal type: maximal of this type  Sk.(Out(S) x Sym(k))  where S simple, k > 1 

 Product type: maximal of this type stabilisers of cartesian decompositions of X=Yk 

 Almost simple type:  S ≤  G  ≤  Aut(S) 

 

 Affine type:       always    [four exceptions if H=Alt(X) and n = |X| = 7, 11, 17, 23]  

 Diagonal type:  always 

 Product type:    always 

 Almost simple type:  S ≤  G  ≤  Aut(S)  The Difficult Case!! 

 

 [Liebeck, CEP, Saxl 1987] 
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Solving the Question: if G is maximal with simple socle S, 

when is G maximal in Sym(X) or Alt(X)? 

 Almost simple type:  S ≤  G  ≤  Aut(S)  S is the socle of G 

 

 Take G = NSym(X)(S) [largest of its ONS type with socle S] 

 If G < H ≤ Sym(X) with H maximal of its ONS type, then H is almost simple or  

 

 

 [Liebeck, CEP, Saxl] 

 

 

Socle is the subgroup  

generated by all the  

minimal normal subgroups 

S H Type of H 

PSL(2,7) AGL(3,2) Affine 

A6 S6 wr S2 Product 

M12 S12 wr S2 Product 

Sp(4,q)                 

q even q > 2 

Sm wr S2   

m=q2(q2-1)/2 

Product  

If such an H exists 
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Major question: when can a primitive G with simple socle S be 

properly contained in another group H with  simple socle T  in 

Sym(X) or Alt(X)? 

 

 Almost simple type:  S ≤  G  ≤  Aut(S)  and T ≤  H  ≤  Aut(T)  and G < H < Sym(X) 

 

 

 

 Already know the answer: we need a factorisation:  

• H = G Hα  with Hα   maximal in H  and 

•               G does not contain T and (if we wish) G maximal in H 

• This is called a maximal factorisation of H  

• We need to know all maximal factorisations of all almost simple groups H 
with one factor G also almost simple and  intersection G ∩ Hα  maximal in G 

 [Liebeck, CEP, Saxl] 

 

 

When does such an H exist? 
If no such H exists  

then G is maximal 
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Summarising where we are: 

 Classifying “Maximal subgroups of Sym(X) and Alt(X)” (X finite) required  

• O’Nan—Scott Theorem for the primitive types 

• Maximal factorisations of all almost simple groups 

 

 Studying symmetric (point-transitive) structures often requires knowledge of 
full automorphism group  

• Problem: finding overgroups of given transitive groups 

• Solving this: combination of “refined O’Nan—Scott” and almost simple 
group facrtoisations 

 

 Next steps:  wee bit about how to find factorisations; lots more about 
problems where we want to use them.   
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Thank you  
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