

Simple Group Factorisations and Applications in Combinatorics Lecture 1

CHERYL E PRAEGER

CENTRE FOR THE MATHEMATICS OF SYMMETRY AND COMPUTATION

Group products and factorisations

- □ Group G and proper subgroups A, B such that G=AB
- ↘ Interesting contrasts between construction and decomposition
- ↘ Well known constructions:
- ▶ Direct product $G = A \times B$ where both A, B normal in G and $A \cap B = 1$
- Semidirect product G = A.B where A normal in G and $A \cap B = 1$
- Solution Sector Secto

A few words about "general products": G = AB, with $A \cap B = 1$

- Bernhard Neumann (1935) recognised interpretation
 - G acting on coset space [G:A] with B a regular subgroup
- ❑ Later rediscovered and called Zappa—Redei—Szep products
- ↘ But already occurred in de Seguier's book 1904
- ☑ 2014 Angore & Militaru "bicrossed product" construction for these general products

A few words about "general products": G = AB, with $A \cap B = 1$

- Bernhard Neumann (1935) recognised interpretation
 - G acting on coset space [G:A] with B a regular subgroup
- \square Coset space: [G:A] = { Ag | g in G }
- □ G-action: x in G maps Ag to Agx by "right multiplication"
- B regular: B is transitive (each coset of the form Ab for some b in B)
 & only the identity of B fixes any coset (Agb=Ag iff b=1)

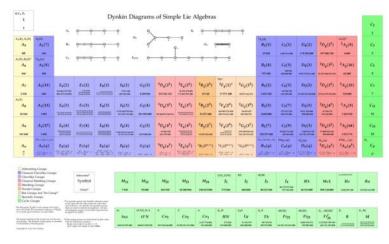
Why factorisations? Why simple groups?

Simple group factorisations:

- What is known?
- How applied?

If extra time then

Different kinds of factorisations



The Periodic Table Of Finite Simple Groups

Courtesy: Ivan Andrus 2012

Why factorisations?

Example Study "symmetric" "structures" X in which all "points" are "equivalent" under "structure-preserving maps"

Structure X	
Graph	
Linear space	
Group	

"Symmetric" will mean:

all "points" of X "equivalent" under "structure-preserving maps"

↘ "Points"? "Structure-preserving maps"?

Structure X	Points	Maps
Graph	Vertices, or edges	Edge-preserving permutations of vertices
Linear space	Points or lines	Line-preserving permutations of points
Group	Involutions (x ² =1)	Group automorphisms

"Symmetric" will mean: all "points" of X "equivalent" under "structure-preserving maps"

- ❑ Automorphism group: Aut(X) = { structure-preserving maps }
- Solution \square "Equivalent": Aut(X) transitive on points: for all points α, β there exists h in Aut(X) such that $\alpha^h = \beta$ (h maps α to β)
- → Problem: Have found G < Aut(X), G transitive on points of X, how to decide if G = Aut(X)?
- Use fact from theory of group actions: all transitive group actions "permutationally isomorphic" to "coset actions"

Coset actions? We have G < Aut(X) with G transitive

- \checkmark Choose a point of X α
- \square Consider the stabiliser of α in H = Aut(X) call it H_{α}

- Since G transitive does not matter which point chosen
- □ Identify "points of X" with "cosets of H_{α} " i.e. with [H: H_{α}]
 - α corresponds to H_{α}
 - α^h corresponds to $H_{\alpha}h$ for each h in Aut(X)

- ☑ Right multiplication action on cosets: for g in H
 - g maps α^{h} to α^{hg} corresponds to
 - g maps H_{α} h to H_{α} hg

Well defined? Yes and bijective since • $H_{\alpha} h = H_{\alpha} g$ • iff hg⁻¹ in H_{α}

• iff
$$\alpha^h = \alpha^g$$

Problem: Have G < H = Aut(X) with G transitive how to decide if G = H?

- \square G transitive (using coset action) means: { H_ag | g in G } = all the cosets
- \square Equivalently: factorisation $H_{\alpha}G = H$

So if G < H then G is transitive if and only if $H_{\alpha}G = H$

Studying whether G = Aut(X) closely linked to "searching for factorisations"

Why simple group factorisations? Since

- ❑ Early studies focused on questions like: Given G=AB and certain properties of A and B, does G inherit similar properties?
- ▶ 1911 W. Burnside's p^aq^b-Theorem could be interpreted
- 1955 Noboru Ito's famous theorem: A, B abelian implies derived group G' is abelian and G is metabelian
- ▶ 1958, 1961 Wielandt & Kegel A, B nilpotent implies G soluble

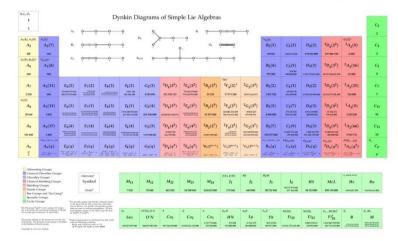
The Periodic Table Of Finite Simple Groups

Why simple groups? [when studying factorisations]

↘ Classifying the finite simple groups

"one of the greatest achievements of twentieth century mathematics"

[From 2008 Abel Prize citation for J. G. Thompson and Jacques Tits]



Courtesy: Ivan Andrus 2012

Although known "by name" even simply stated problems remain open:

What do all the largest (maximal) subgroups of the simple groups look like?

"Periodic table" depicts simple groups: columns are infinite families, bottom green rows are sporadic simple groups

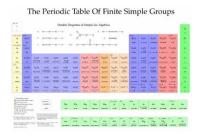
A closer look "for fun"

Eigerigtt () sins han deden

The Periodic Table Of Finite Simple Groups

1. 1	Dynkin Diagrams of Simple Lie Algebras																
1		A.,	<u> </u>		ọ	9		<i>F</i> ₀	<u> </u>	ç i ç −							C2
h(4), A1(5)	A ₁ (2)		1811 - 181 182	22 	ı	/	<u> </u>	<u>o</u>	- 19 - 11 17 <u>1</u> 41 - 10			$^{2}A_{2}(1)$	CONTRACT.	1000 00000		G ₂ (2)'	
A5	A ₁ (7)	8.	o o	- ș	Ģ	ģ		<u>۹</u> .	G2	9		B ₂ (3)	C3(3)	$D_4(2)$	${}^{2}D_{4}(2^{2})$	² A ₂ (9)	63
60	365	C.			-0 6	7.8 O			-0			25.928		174152400	197 616 720	6.068	3
(9).m(2)" A ₆	$A_{1}(8)$	5500	1 . 1	Ť	¥		1	7 7	Ť.	ř ř		B ₂ (4)	C ₃ (5)	D4(3)	${}^{2}D_{4}(3^{2})$	$^{2}A_{2}(16)$	C ₁
340	101											879 208	228.301	4912 119 414 480	101210-046-019 120	62 800	5
A7	A1(11)	E ₆ (2)	E7(2)	E ₈ (2)	F4(2)	G2(3)	$^{3}D_{4}(2^{3})$	${}^{2}E_{6}(2^{2})$	${}^{2}B_{2}(2^{3})$	^{Tim*} ² F ₄ (2)'	${}^{2}G_{2}(3^{3})$	B ₃ (2)	C4(3)	D ₃ (2)	${}^{2}D_{\pi}(2^{2})$	2A,(25)	C7
2 520		210841979522		-	2 311 124	4 241 010	211301312	16.512 (Trail)	29120	17971 200		1411 120				125.000	7
(2)															Carlos de Carlos de Carlos		
A_8	A ₁ (13)	$E_{6}(3)$	$E_{7}(3)$	$E_{8}(3)$	$F_4(3)$	$G_{2}(4)$	${}^{3}D_{4}(3^{3})$	${}^{2}E_{6}(3^{2})$	${}^{2}B_{2}(2^{5})$	${}^{2}F_{4}(2^{3})$	${}^{2}G_{2}(3^{5})$	$B_{2}(5)$	$C_{3}(7)$	$D_{4}(5)$	${}^{2}D_{4}(4^{2})$	${}^{2}A_{3}(9)$	C1
20.360	1.012	SECONDE	'Excession	100000	8734 434793 834 #73 544793 889	251 9mi nem	30.7000.0213.500.012	-	32.537.668	360185302400 380376638400	49403-437 439348-352	4 588 000	273 477 238 684 910 481	9-11123-100 	47 536-675 315-636 868	3 265 920	- 11
A9	A ₁ (17)	E ₆ (4)	E ₇ (4)	E ₈ (4)	F4(4)	G2(5)	$^{3}D_{4}(4^{3})$	${}^{2}E_{6}(4^{2})$	${}^{2}B_{2}(2^{7})$	${}^{2}F_{4}(2^{5})$	${}^{2}G_{2}(3^{7})$	B ₂ (7)	C3(9)	D3(3)	$^{2}D_{4}(s^{2})$	² A ₂ (64)	C1
181.640	2.045	aller to the second	1919111155	ETERIOT .	-		41962568 4427983488	and a state of the	-	20200	the conversit that mit have bed with	134247400	\$4.023 THE 482 (199 Mail 2000	1 200 112 700	17 808 101214	5515776	13
	and a first	$L_0(q)$	$E_7(q)$	5.60	540	0.60	in (a)	25 (2)	2B2(22++1)	${}^{2}F_{4}(2^{2n+1})$	1G ₂ (3 ²⁺⁺¹)	Participantes Participantes		$\frac{\partial_{m}^{*}(q)}{D_{n}(q)}$	$\frac{O_{in}(q)}{2D_{in}(q^2)}$	PSil(q)	z,
A _π ∉	A _R (q)	10(q)	Sale .	Es(q) 5885	F4(q)	G2(q)	³ D ₄ (q ³) 9%35%	2E6(q2)	-M2(2000)	All and a	- (g(())	B _n (q)	Cn(q)	Contine of	·D _N (q·)	² A _n (q ²)	9
												Law and the					
	ing Groups Chevalley Groups	1	144000404		-					Land Arrest		HIM			_	0.004.070	
Chevalle	y Groups Steinberg Groups		Alternates" Symbol		M11	M12	M22	M23	M24	/(1), /(11)	11	la la	14	HS	McL	He	Ru
Servici C	t Cannta		10 5#227754750 20202744										81775.571.040				
Ree Gros	aps and Tits Group		Order ¹		7.929	95.040	443 329	10 200/960	244.825.049	175 568	604.500	50.232 948	1077 542 546	44.353.000	898128-898	1431307308	1019061448
Sporadic Cyclic Gi		10.84 - 40	As properied briefs	htp-and-statist, Warry													
Disgrap 'V ₁) h Rodinato D	(2)" in cast a galaxy of Lacty removalation antigency of C	yes; How on a	anes. An apolla ano- one to industriant term appen on the left (M 2(P)).	etende groupe	Ke	0'NE.0-8	a	4	45	1LD	135	F _b .F	M(22)	M(23)	E.MOR	r,	F.M.
groups starting	country 1 is type defections on the manual one are the penalty security gamp in an evolution of the sec	the Walk of	(in d _n (1ⁿ)) pleases an determine thereing completes of f ₁ (1) to 1 with 4	and by Balls arrive	Suz	O'N	Co3	Co ₂	Co1	HN	Ly	Th	Fi22	Fi23	Fi'24	B	M
250123		A. P.A.	(2) and A(0) at only	2040	44834345007680	98811361108	443768-636-048	42365421312888	50.340180	112-031-049	005100-000	801872488	64 (61 75) (64 (60)	20.00138	441731282488	and the local division of	

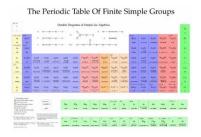
Courtesy: Ivan Andrus 2012



Left hand column of periodic table Smallest A₅ symmetry group of several small viruses

Alternating groups A_n: an infinite family of simple groups

- □ 1980 Start with H = Alt(n) or Sym(n) find all maximal subgroups G
- → By 1986 some cases solved
 - 1983 Guralnick n prime power
 - 1985 Liebeck & Saxl n=kp with p prime and k < p
 - 1985, 87 Kantor, Liebeck & Saxl n odd



Left hand column of periodic table Smallest A₅ symmetry group of several small viruses

Alternating groups A_n: an infinite family of simple groups

- ▶ 1990 Liebeck, CEP, SaxI: Reduced the problem of classifying maximal subgroups of simple groups A_n
- ↘ To a problem involving all simple groups:

Classify all factorisations S=AB of all simple groups S with A, B maximal subgroups of S.

- Solution occupies a research monograph: useful for many applications
- **Will try to explain where this reduction comes from and how it can be used**

Really need to know maximal subgroups of "almost simple" groups H where H between simple group S and Aut(S)

Maximal subgroups G of H = Sym(X) or Alt(X) where X = $\{1, 2, ..., n\}$

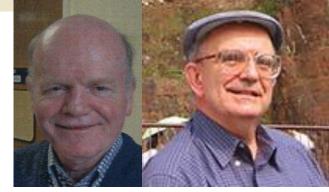
- ▶ For simplicity take H = Sym(X), and G < H [maximal]
- □ G is a permutation group on X analyse properties of the G-action
- G intransitive on X means G preserves a proper subset Y of X
- So G contained in the largest such group $Sym(Y) \times Sym(X Y)$
- \square Question then is: when is Sym(Y) x Sym(X\Y) maximal in H?
- Answer is: almost always maximal exception when 2.|Y| = n [when swapping Y and X\Y gives a larger subgroup]
- ↘ This gives one "type" of maximal subgroup
- ↘ And in all other cases G is transitive on X

r equal-sized parts, permuted by G

Maximal subgroups G of H = Sym(X) where X = $\{1, 2, ..., n\}$

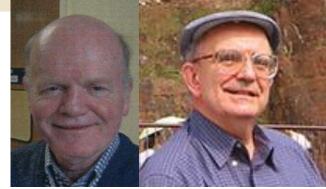
- ↘ Take analysis further so G transitive on X Next case:
- □ G imprimitive on X means G preserves a nontrivial partition P of X
- \square So G contained in the largest such group Stab(P) = Sym(Y) wr Sym(r)
- ❑ Question: when is Stab(P) maximal in H?
- Answer: Stab(P) is always maximal
- \square [a tiny exception when H = Alt(8) with Stab_H(P) contained in an affine group AGL(3,2)]
- ↘ This gives second "type" of maximal subgroup
- And in all other cases G is primitive on X G preserves no nontrivial partitions
- \square Equivalently stabiliser G_{α} is maximal in G

O'Nan—Scott theory is the "post-classification standard" for analysing finite group actions



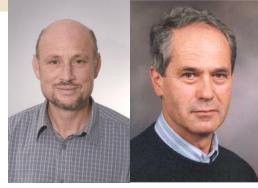
Maximal subgroups G of H = Sym(X) where X = $\{1, 2, ..., n\}$

- Analysing the primitive groups G in a similar manner
- ☑ One of the first initiatives involving group actions following the simple group classification. First done independently by Michael O'Nan and Leonard Scott
- Solution Solution
- \square Description of (primitive hopefully maximal) subgroups G of Sym(X) of Alt(X)
- \land Affine type: X = finite vector space and G = AGL(X)
- ▷ Diagonal type: maximal of this type S^k .(Out(S) x Sym(k)) where S simple, k > 1
- \square Product type: maximal of this type stabilisers of cartesian decompositions of X=Y^k
- \square Almost simple type: $S \le G \le Aut(S)$
- ▶ Big Question: if G is maximal of its ONS-type when is G maximal in Sym(X) or Alt(X)?



Solving the **Question**: if G is maximal of its ONS-type when is G maximal in Sym(X) or Alt(X)?

- \checkmark Affine type: X = finite vector space and G = AGL(X)
- ▷ Diagonal type: maximal of this type S^k .(Out(S) x Sym(k)) where S simple, k > 1
- → Product type: maximal of this type stabilisers of cartesian decompositions of X=Y^k
- \square Almost simple type: $S \le G \le Aut(S)$
- ▶ Affine type: always [four exceptions if H=Alt(X) and n = |X| = 7, 11, 17, 23]
- ↘ Diagonal type: always
- ↘ Product type: always
- ▷ Almost simple type: $S \le G \le Aut(S)$ The Difficult Case!!
- ↘ [Liebeck, CEP, Saxl 1987]



Solving the **Question:** if G is maximal with simple socle S, when is G maximal in Sym(X) or Alt(X)?

▷ Almost simple type: $S \le G \le Aut(S)$ S is the socle of G

Socle is the subgroup generated by all the minimal normal subgroups

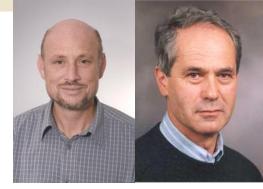
 \square Take G = N_{Sym(X)}(S) [largest of its ONS type with socle S]

If such an H exists

[Liebeck, CEP, Saxl]

□ If $G < H \le Sym(X)$ with H maximal of its ONS type, then H is almost simple or

S	Н	Type of H
PSL(2,7)	AGL(3,2)	Affine
A ₆	$S_6 \text{ wr } S_2$	Product
M ₁₂	S_{12} wr S_2	Product
Sp(4,q) q even q > 2	S _m wr S ₂ m=q²(q²-1)/2	Product



Major question: when can a primitive G with simple socle S be properly contained in another group H with simple socle T in Sym(X) or Alt(X)?

Almost simple type: $S \le G \le Aut(S)$ and $T \le H \le Aut(T)$ and G < H < Sym(X)

When does such an H exist?

If no such H exists then G is maximal

- ▶ Already know the answer: we need a factorisation:
 - $H = G H_{\alpha}$ with H_{α} maximal in H and
 - G does not contain T and (if we wish) G maximal in H
 - This is called a maximal factorisation of H
 - We need to know all maximal factorisations of all almost simple groups H with one factor G also almost simple and intersection $G \cap H_{\alpha}$ maximal in G
- ↘ [Liebeck, CEP, Saxl]

Summarising where we are:

- □ Classifying "Maximal subgroups of Sym(X) and Alt(X)" (X finite) required
 - O'Nan—Scott Theorem for the primitive types
 - Maximal factorisations of all almost simple groups
- Studying symmetric (point-transitive) structures often requires knowledge of full automorphism group
 - Problem: finding overgroups of given transitive groups
 - Solving this: combination of "refined O'Nan—Scott" and almost simple group facrtoisations
- Next steps: wee bit about how to find factorisations; lots more about problems where we want to use them.

Thank you

Photo. Courtesy: Joan Costa joancostaphoto.com

Γhe University of Western Australia