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Introduction

All non-abelian finite simple groups are either

◮ alternating OR

◮ sporadic OR

◮ automorphism groups of buildings.
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The results in chapters one, two and four are due to Jacques Tits,
the results in the third chapter, to Bernhard Mühlherr.



Moufang polygons



Generalized n-gons

Definition

A generalized n-gon is a bipartite graph of diameter n such that
the length of a shortest circuit is 2n.



Generalized n-gons

Definition

A generalized n-gon is thick if each vertex has at least three
neighbors.

Definition

A generalized n-gon is thin if each vertex has at exactly two
neighbors.



Generalized n-gons

Definition

A generalized n-gon is thick if each vertex has at least three
neighbors.

Definition

A generalized n-gon is thin if each vertex has at exactly two
neighbors.

Examples

◮ generalized 2-gons = complete bipartite graphs

◮ generalized 3-gons = projective planes



Generalized n-gons

We always assume that

◮ Γ is thick.

◮ n ≥ 3.

Definitions

A root is a path of length n.
An apartment is a circuit of length 2n.

◮ Every path of length n + 1 lies on a unique apartment.



The Moufang property

Definition

Let
α = (x0, x1, x2, . . . , xn−1, xn)

be a root. The root group Uα is the pointwise stabilizer of

Γx1 ∪ Γx2 ∪ · · · ∪ Γxn−1 .

Definition

Γ is Moufang if for every root α, the root group Uα acts
transitively on the set of apartments containing α.



Root group sequences

Let Σ be an apartment. We number its vertices consecutively

x0, x1, x2, . . .

(with indices modulo 2n) and let Ui denote the root group

U(xi ,xi+1,...,xi+n).

U1,U2, . . . ,Un are the root groups fixing the vertices xn−1 and xn.

Let

U+ = 〈U1,U2, . . . ,Un〉.



Uniqueness

Definition

The sequence
(U+,U1,U2, . . . ,Un)

is called the root group sequence of Γ.

Theorem (Uniqueness)

Γ is uniquely determined by its root group sequence.



Commutator relations

Let
U[k,s] = UkUk+1 · · ·Us

for all k , s with 1 ≤ k ≤ s ≤ n and U[k,s] = 1 if s < k .

◮ [Ui ,Uj ] ⊂ U[i+1,j−1] for all i , j with 1 ≤ i < j ≤ n.

◮ [Ui ,Ui+1] = 1.

Thus U+ = U1U2 · · ·Un.



Key observation

The group U+ = 〈U1,U2, . . . ,Un〉 is uniquely determined by the
individual Ui and the commutator relations of the form

[ui , uj ] = ui+1 · · · uj−1,

where uk ∈ Uk for all k .



n = 3

◮ K is a field.

◮ xi : K → Ui is an isomorphism for i = 1, 2, 3:

xi(s)xi (t) = xi(s + t) for all s, t ∈ K .

◮ [x1(s), x3(t)] = x2(st).

This construction works also if K is a skew field or an octonion
division algebra. The Moufang triangles we obtain are

◮ algebraic if K is finite dimensional over its center

◮ classical if K is a skew field.

◮ exceptional if K is octonion.



Quaternions

Let E/K be a separable quadratic extension with norm N, so
N(a) = a · aσ. Let α be in K\N(E ) and let

Q = {a + eb | a, b ∈ E},

where

a · eb = e(aσb), eb · a = e(ab), ea · eb = αaσb.

Then Q is a division algebra with center K . Its norm N is given by

N(a + eb) = N(a)− αN(b)

and its standard involution σ is given by

(a + eb)σ = aσ − eb.



Octonions
Let Q be a quaternion division algebra with center K and standard
involution σ.

Let β be in K\N(Q) and let

A = {a + fb | a, b ∈ Q},

where

a · fb = f (aσb), fb · a = f (ab), fa · fb = βaσb.

Then A is a (non-associative) division algebra with center K .

Its norm N is given by

N(a + fb) = N(a)− βN(b)

and its standard involution σ is given by

(a + fb)σ = aσ − fb.



n = 4: Quadratic form type

Let (K ,V , q) be an anisotropic quadratic space:

◮ K is a field.

◮ V is a vector space over K .

◮ q : V → K



n = 4: Quadratic form type

Let (K ,V , q) be an anisotropic quadratic space:

◮ K is a field.

◮ V is a vector space over K .

◮ q : V → K

such that

◮ f (a, b) = q(a + b)− q(a)− q(b) is bilinear.

◮ q(ta) = t2q(a).

◮ q(a) = 0 if and only if a = 0.



n = 4: Quadratic form type

Let (K ,V , q) be an anisotropic quadratic space:

◮ K is a field.

◮ V is a vector space over K .

◮ q : V → K

such that

◮ f (a, b) = q(a + b)− q(a)− q(b) is bilinear.

◮ q(ta) = t2q(a).

◮ q(a) = 0 if and only if a = 0.

Let xi : K → Ui for i = 1 and 3 and xi : L → Ui for i = 2 and 4.

[x1(t), x4(a)] = x2(ta)x3(tq(a)) and [x2(a), x4(b)] = x3(f (a, b)).



Anisotropic quadratic forms

Examples

◮ V = K and q(t) = t2.

◮ The norm of a quadratic extension.

◮ The norm of a quaternion or octonion division algebra.

◮ If K is finite, then dimKL ≤ 2.

If char(K ) 6= 2, then q(a) = f (a, a)/2.



n = 4: Involutory type

Let K be a field or skew field and let σ be an involution of K :

◮ σ is an additive automorphism of K .

◮ (ab)σ = bσaσ.

◮ σ is of order 2.



n = 4: Involutory type

Let K be a field or skew field and let σ be an involution of K :

◮ σ is an additive automorphism of K .

◮ (ab)σ = bσaσ.

◮ σ is of order 2.

An involutory set is a triple (K ,K0, σ), where K0 be an additive
subgroup of K containing 1 such that

◮ Kσ = {a + aσ | a ∈ K} ⊂ K0 ⊂ Kσ = {a ∈ K | aσ = a}.

◮ aσK0a ⊂ K0.



n = 4: Involutory type

Let K be a field or skew field and let σ be an involution of K :

◮ σ is an additive automorphism of K .

◮ (ab)σ = bσaσ.

◮ σ is of order 2.

An involutory set is a triple (K ,K0, σ), where K0 be an additive
subgroup of K containing 1 such that

◮ Kσ = {a + aσ | a ∈ K} ⊂ K0 ⊂ Kσ = {a ∈ K | aσ = a}.

◮ aσK0a ⊂ K0.

Let xi : K0 → Ui for i = 1 and 3 and xi : K → Ui for i = 2 and 4.

[x1(t), x4(u)] = x2(tu)x3(u
σtu) and [x2(u), x4(v)] = x3(u

σv+vσu).



Involutory sets

Let (K ,K0, σ) be an involutory set.

◮ If char(K ) 6= 2, then a = (a/2) + (a/2)σ for a ∈ Kσ, so
Kσ = Kσ.

◮ If char(K ) = 2, let (u + Kσ)t = tσut + Kσ. This makes
Kσ/Kσ into a right vector space over K !!

◮ If K is commutative, then F := Kσ = K0 = Kσ is a subfield
and K/F is a separable quadratic extension.

◮ Either K = 〈K0〉 (as a subring) or

◮ K is commutative.

◮ K is a quaternion division algebra algebra and σ is the
standard involution of K .



Pseudo-quadratic forms

Let (K ,K0, σ) be an involutory set, let L be a right vector space
over K and let f be a skew-hermitian form on L:

◮ f (u + v ,w) = f (u,w) + f (v ,w)

◮ f (u,wt) = f (u,w)t and f (ut,w) = tσf (u,w)t

◮ f (u,w)σ = −f (u,w)



Pseudo-quadratic forms

Let (K ,K0, σ) be an involutory set, let L be a right vector space
over K and let f be a skew-hermitian form on L:

◮ f (u + v ,w) = f (u,w) + f (v ,w)

◮ f (u,wt) = f (u,w)t and f (ut,w) = tσf (u,w)t

◮ f (u,w)σ = −f (u,w)

A map q : L → K is a pseudo-quadratic form if for some
skew-hermitian form f :

◮ q(u + w) ≡ q(u) + q(w) + f (u,w) (mod K0)

◮ q(ut) ≡ tσq(u)t (mod K0)

q is anisotropic if

◮ q(u) ≡ 0 (mod K0) iff a = 0.



Anisotropic pseudo-quadratic forms

Example

◮ Let (K ,K0, σ) be an involutory set.

◮ Let γ ∈ K\K0.

◮ Let q : K → K be given by q(t) = tσγt.

◮ Let f (s, t) = sσ(γ − γσ)t for all s, t.

◮ Let L = K .

Then f is a skew-hermitian form on L and

q(s + t) = sσγs + tσγt + sσγt + tσγs

= q(s) + q(t) + f (s, t) + sσγσt + tσγs

= q(s) + q(t) + f (s, t) + (tσγs)σ + (tσγs)

and (tσγs)σ + (tσγs) ∈ {a + aσ | a ∈ K} ⊂ K0.



Anisotropic pseudo-quadratic forms

◮ q(u) = f (u, u)/2 if char(K ) 6= 2.

◮ If K is finite, then dimKL ≤ 1.



Moufang sets

Let X be a set. For each x ∈ X , let Ux be a subgroup of the
symmetric group Sym(X ) and let G be a subgroup of Sym(X )
containing

〈Ux | x ∈ X 〉.

The pair (G , {Ux | x ∈ X}) is a Moufang set if

◮ For each x ∈ X , Ux fixes x and acts sharply transitively on
X\{x}; and

◮ {Ux | x ∈ X} is a conjugacy class of subgroups in G .



Moufang sets

Examples

◮ The group of special fractional linear maps

x 7→
ax + b

cx + d

acting on the projective line K ∪ {∞}.

◮ The set of neighbors of a fixed vertex of a Moufang polygon.



Spherical Buildings



Coxeter groups

A square symmetric matrix (mst)s,t∈S is a Coxeter matrix if

mss = 1 and mst ∈ {2, 3, 4, 5, . . . ,∞}.

Let M = (mst)s,t∈S be a Coxeter matrix. Then

W = 〈si | (st)
mst = 1 for all s, t ∈ S such that mst < ∞〉

is the corresponding Coxeter group and the pair (W ,S) is the
corresponding Coxeter system.

The graph with vertex set S and edges all pairs {s, t} such that
mst ≥ 3 labeled by the quantity mst is called the corresponding
Coxeter diagram.



Coxeter groups

Example

The Coxeter group corresponding to the Coxeter diagram having
just two vertices and one edge with label n ∈ {3, 4, 5, . . . ,∞} is
the dihedral group D2n.



Irreducible and spherical Coxeter matrices

Definition

A Coxeter matrix is irreducible if the Coxeter diagram is connected.

Definition

A Coxeter matrix is spherical if the Coxeter group W is finite.

The spherical Coxeter matrices were classified by Coxeter in the
1930’s.



Chamber systems

Let S be a set of “colors.” An S-colored chamber system is a
connected graph whose edges each have a color from the set S
such that for each vertex x , the following hold:

◮ For each s ∈ S , there exists a vertex y such that {x , y} is an
edge of color s.

◮ If y , z are two vertices such that {x , y} and {x , z} are both
edges of color s, then {y , z} is also an edge of color s.



Chamber systems

Definitions

A chamber system is thick if for each vertex x and each color
s ∈ S , there exists at least two s-colored edges containing x .

A chamber system is thin if for each vertex x and each color s ∈ S ,
there exists exactly one s-colored edges containing x .



Examples of chamber systems

Let (W ,S) be a Coxeter system.

Let Σ = ΣM be the S-colored graph with vertex set W whose
s-colored edges (for each s ∈ S) are all pairs of the form

{x , y}

for some x , y ∈ W such that x−1y = s.

Σ is a thin chamber system.



Examples of chamber systems

Let Γ = (V ,E ) be a connected bipartite graph in which every
vertex has at least two neighbors.

Thus V is a disjoint union B ∪W such that every edge contains
one vertex in B and one in W .

Let S be the 2-element set {B ,W }.

Let ∆Γ be the graph whose vertices are the edges of Γ, where two
edges of Γ are joined by an edge of color s ∈ S in ∆Γ precisely
when the two edges of Γ intersect in a vertex of Γ contained in s.

∆Γ is a chamber system with two colors.

∆Γ is thick if and only if every vertex of Γ has at least three
neighbors.

Γ is a circuit of length 2n if and only if ∆Γ is a circuit of length 2n.



Subgraphs

Let Γ = (V ,E ) be a graph with vertex set V and edge set E .

Definition

A subgraph is a pair (X ,E ′), where

◮ X ⊂ V and

◮ E ′ is a subset of E consisting of 2-element subsets of X .

Definition

Let X ⊂ V . The subgraph spanned by X is the subgraph (X ,EX ),
where EX denotes the set of all edges of E consisting of 2-element
subsets of X .



Residues and panels in chamber systems

◮ Let ∆ = (V ,E ) be an S-colored chamber system.

◮ Let J be a subset of S .

◮ Let EJ be the set of edges whose color is contained in J.

Definition

A J-residue of ∆ is a connected component of the subgraph
(V ,EJ).



Residues and panels in chamber systems

◮ Let ∆ = (V ,E ) be an S-colored chamber system.

◮ Let J be a subset of S .

◮ Let EJ be the set of edges whose color is contained in J.

Definition

A J-residue of ∆ is a connected component of the subgraph
(V ,EJ).

◮ Each vertex of ∆ lies in a unique J-residue.



Residues and panels in chamber systems

◮ Let ∆ = (V ,E ) be an S-colored chamber system.

◮ Let J be a subset of S .

◮ Let EJ be the set of edges whose color is contained in J.

Definition

A J-residue of ∆ is a connected component of the subgraph
(V ,EJ).

◮ Each vertex of ∆ lies in a unique J-residue.

◮ The set J is the type of a J-residue and the cardinality of J is
the rank of the a J-residue.



Residues and panels in chamber systems

◮ Let ∆ = (V ,E ) be an S-colored chamber system.

◮ Let J be a subset of S .

◮ Let EJ be the set of edges whose color is contained in J.

Definition

A J-residue of ∆ is a connected component of the subgraph
(V ,EJ).

◮ Each vertex of ∆ lies in a unique J-residue.

◮ The set J is the type of a J-residue and the cardinality of J is
the rank of the a J-residue.

◮ The cardinality of S is the rank of ∆.



Residues and panels in chamber systems

◮ A residue of rank one is called a panel.

◮ Panels are complete graphs having at least two vertices.



Convexity

Let Γ = (V ,E ) be a graph.

Definition

A subgraph (X ,E ′) of Γ is convex if for all x , y ∈ X and for all
paths (x0, x1, . . . , xk) in Γ from x0 = x to xk = y of minimal
length:

◮ xi ∈ X for all i ∈ [0, k] and

◮ {xi−1, xi} ∈ E ′ for all i ∈ [1, k].



Buildings

◮ Let M be a Coxeter diagram with vertex set S .

◮ Let Σ = ΣM be the corresponding S-colored thin chamber
system.

◮ Let ∆ be an arbitrary S-colored thick chamber system.

Definition

An apartment in ∆ is a subgraph isomorphic to Σ.



Buildings

Let M be our Coxeter diagram with vertex set S .

Definition

A building of type M is an S-colored chamber system ∆ such that
the following hold:

◮ For each vertex x and each panel P , there exists a unique
vertex in P nearest to x .

◮ Every two vertices are contained in an apartment.

◮ Apartments are convex.



Irreducible buildings

Let ∆ be a building of type M.

Definition

◮ ∆ is called irreducible if the Coxeter diagram M is connected.

Every building is the direct product of irreducible buildings in a
suitable sense.



Spherical buildings

Definition

◮ A building ∆ is called spherical if its apartments are finite.



Examples of buildings

Example

A building of rank one is just a complete graph whose apartments
are the subgraphs spanned by its 2-element subsets.

Example

◮ Let M be a Coxeter diagram with vertex set S .

◮ Let Σ be the corresponding thin S-colored chamber system.

Then Σ itself is the unique thin building of type M.



The chamber system associated with a bipartite graph

Let Γ be a connected bipartite graph in which every vertex has at
least two neighbors. We have observed that the edge graph ∆Γ is
a chamber system of rank 2.

In fact, every chamber system of rank 2 arises in this way.

Thus:

Connected bipartite graphs every vertex of which has at least two
neighbors and chamber systems of rank 2 are essentially the same
thing!



Buildings and generalized polygons

Let M be an irreducible Coxeter diagram with two vertices and let
n be the label on the unique edge of M.

Let ∆ be a building of type M.

Let Γ be the corresponding bipartite graph.

◮ If n < ∞, then Γ is a generalized n-gon.

◮ If n = ∞, then Γ is a tree, every vertex of which has at least
two neighbors.



A basic property of buildings

Let M be a Coxeter diagram with vertex set S .

Let ∆ be a building of type M.

Let J ⊂ S , let MJ be the subdiagram spanned by the set J and let
R be a J-residue of ∆.

Then R is a convex subgraph. It is also a building of type MJ

whose apartments are the intersections

R ∩ Σ

for all apartments Σ of ∆ containing chambers of R .



Roots in buildings

Suppose: ∆ is a building and Σ is an apartment of ∆.

If e is an edge and x a vertex of Σ, then x is nearer to one vertex in
e then it is to the other. The nearer vertex in e is called proje(x).

Two edges e and e′ of Σ are parallel if the map proje is a bijection
from e′ to e. This is an equivalence relation.

A root of Σ is a connected component of the graph obtained from
Σ by removing all the edges in a parallel class.

A root of ∆ is a root of one of its apartments. A root can be the a
root in many apartments simultaneously.



Moufang buildings

Let ∆ be a thick irreducible spherical building of rank at least two.

Let α be a root of ∆.

The root group Uα is the pointwise stabilizer in Aut(∆) of the set
of all vertices adjacent to at least two chambers in α.

The root group Uα acts trivially on α.

∆ is Moufang if for every root α, the root group Uα acts
transitively on the set of apartments containing α.



A local-to-global principle

Definition

For each vertex x of a building ∆, let E2(x) be the subgraph
spanned by all the irreducible rank 2 residues of ∆ containing x .

Theorem

Let ∆ and ∆′ be two thick irreducible spherical buildings of the

same type M and let x ∈ ∆ and x ′ ∈ ∆′ be vertices. Suppose that

ϕ is an isomorphism from E2(x) to E2(x
′). Then ϕ extends to an

isomorphism from ∆ to ∆′.

Thus a spherical building is uniquely determined by the irreducible
rank 2 residues containing a fixed vertex.



A local-to-global principle

Corollary

Every thick irreducible spherical building of rank at least three is

Moufang, as is every irreducible residue of rank at least two of

such a building.



The classification of thick buildings of type H3 and H4



The classification of thick buildings of type H3 and H4

There aren’t any.



The classification of simply laced spherical buildings

Let M be one of the Coxeter diagrams Aℓ for ℓ ≥ 3, Dℓ for ℓ ≥ 4,
E6, E7 or E8.

Let ∆ be a thick building of type M.



The classification of simply laced spherical buildings

Let M be one of the Coxeter diagrams Aℓ for ℓ ≥ 3, Dℓ for ℓ ≥ 4,
E6, E7 or E8.

Let ∆ be a thick building of type M.

Then all irreducible rank 2 residues of ∆ are Moufang triangles
defined by the same field or skew field K .
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Let M be one of the Coxeter diagrams Aℓ for ℓ ≥ 3, Dℓ for ℓ ≥ 4,
E6, E7 or E8.

Let ∆ be a thick building of type M.

Then all irreducible rank 2 residues of ∆ are Moufang triangles
defined by the same field or skew field K .

∆ is uniquely determined by M and K .



The classification of simply laced spherical buildings

Let M be one of the Coxeter diagrams Aℓ for ℓ ≥ 3, Dℓ for ℓ ≥ 4,
E6, E7 or E8.

Let ∆ be a thick building of type M.

Then all irreducible rank 2 residues of ∆ are Moufang triangles
defined by the same field or skew field K .

∆ is uniquely determined by M and K .

If the Coxeter diagram M has a vertex of degree 3, then K must
be commutative.



The classification of spherical buildings

Suppose that M is the Coxeter diagram Bℓ for ℓ ≥ 3.

Let K be the field or skew field or octonion division algebra
defining the residue of type Aℓ−1 containing a fixed chamber x .

Then ∆ is uniquely determined by

◮ An anisotropic quadratic space (K , L, q) OR

◮ An involutory set (K ,K0, σ) OR

◮ An anisotropic pseudo-quadratic space (K ,K0, σ, L, q) OR

◮ An honorary involutory set (K ,K0, σ).

This last case can only occur if ℓ = 3.



The classification of spherical buildings

An honorary involutory set is a triple (K ,K0, σ), where

◮ K is an octonion division algebra

◮ K0 is its center

◮ σ is its standard involution.



Buildings of type F4

Buildings of type F4 are classified by the following families of
anisotropic quadratic spaces (F ,K , q):

◮ char(F ) = 2, K is a purely inseparable extension of F of
exponent 1 and q(x) = x2.

◮ F = K and q(x) = x2.

◮ K/F is a separable quadratic extension and q is its norm.

◮ K is a quaternion division algebra, F is its center and q is its
norm.

◮ K is an octonion division algebra, F is its center and q is its
norm.



Buildings of type F4

Buildings of type F4 are classified by the following families of
involutory sets (K ,F , σ):

◮ char(K ) = 2, K is a purely inseparable extension of the field
F of exponent 1 and σ = id.

◮ F = K and σ = id.

◮ K/F is a separable quadratic extension and σ is the
non-trivial element in Gal(K/F ).

◮ K is a quaternion division algebra, F is its center and σ is its
standard involution.

◮ K is an octonion division algebra, F is its center and σ is its
standard involution.



The field of definition

In almost every case the relevant algebraic structure is defined over
a field or a skew field or an octonion division algebra K . We call K
the field of definition of the spherical building ∆. It is an invariant
of ∆.

The algebraic structure itself is also an invariant, more or less. For
example, two anisotropic quadratic spaces if and only if they are
similar.

In the remaining cases, the relevant algebraic structure is defined
over a purely inseparable field extension K/F in characteristic
p = 2 or 3 such that Kp ⊂ F . Tits calls these the mixed cases.



Conclusion

There is a Moufang spherical building corresponding to every
absolutely simple algebraic group of F -rank at least 2. Here F is
the center Z (K ) of the defining field K or, in some cases,
F = Z (K ) ∩ Kσ for some involution σ of K .

The only Moufang spherical buildings which do not arise in this
way are those that involve:

◮ an infinite dimensional vector space,

◮ a skew field of infinite dimension over its center,

◮ a bilinear (or skew-hermitian form) that is degenerate or

◮ a purely inseparable field extensions in characteristic 2 or 3.



The classification of Moufang polygons

There are triangles, hexagons, octagons and six families of
quadrangles.



Descent in buildings



The opposite map

Let M be a Coxeter diagram, let J be a subset of the vertex set S
of M and let ΣJ be the chamber system associated with the
subdiagram MJ .

Suppose that the subdiagram MJ is spherical.



The opposite map

Let M be a Coxeter diagram, let J be a subset of the vertex set S
of M and let ΣJ be the chamber system associated with the
subdiagram MJ .

Suppose that the subdiagram MJ is spherical.

Then there is an automorphism of ΣJ which maps each vertex to
the unique opposite vertex. This automorphism induces an
automorphism of the Coxeter diagram MJ which we denote by opJ .



The opposite map

Let M be a Coxeter diagram, let J be a subset of the vertex set S
of M and let ΣJ be the chamber system associated with the
subdiagram MJ .

Suppose that the subdiagram MJ is spherical.

Then there is an automorphism of ΣJ which maps each vertex to
the unique opposite vertex. This automorphism induces an
automorphism of the Coxeter diagram MJ which we denote by opJ .

The map opJ stabilizes each connected component of MJ .



The opposite map

Let M be a Coxeter diagram, let J be a subset of the vertex set S
of M and let ΣJ be the chamber system associated with the
subdiagram MJ .

Suppose that the subdiagram MJ is spherical.

Then there is an automorphism of ΣJ which maps each vertex to
the unique opposite vertex. This automorphism induces an
automorphism of the Coxeter diagram MJ which we denote by opJ .

The map opJ stabilizes each connected component of MJ .

The map opJ acts non-trivially on a connected component X of MJ

iff

X is An for arbitrary n ≥ 2, E6, Dn for n ≥ 4 odd or I2(n) for
n ≥ 3 odd.



Tits indices

Definition

A Tits index is a triple (M,Θ,A), where

◮ M is a Coxeter diagram with vertex set S .

◮ Θ is a subgroup of Aut(M).

◮ A is a Θ-invariant subset S



Tits indices

Definition

A Tits index is a triple (M,Θ,A), where

◮ M is a Coxeter diagram with vertex set S .

◮ Θ is a subgroup of Aut(M).

◮ A is a Θ-invariant subset S such that for each s ∈ S\A,

◮ the subdiagram MΘ(s)∪A is spherical and

◮ A is opΘ(s)∪A-invariant.



The longest element

Let M be a Coxeter diagram, let J be a subset of the vertex set S
of M and let ΣJ be the chamber system associated with the
subdiagram MJ .

Let WJ = 〈J〉. Thus WJ is both a finite subgroup of W and the
vertex set of ΣJ .

The unique vertex of ΣJ opposite the vertex 1 is called the longest
element of WJ . We denote this element by wJ .



The relative Coxeter group

Theorem

Let (M,Θ,A) be a Tits index. For each s ∈ S\A, let s̃ be the

product of the longest element in the Coxeter group WA and the

longest element in the Coxeter group WΘ(s)∪A.
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The relative Coxeter group

Theorem

Let (M,Θ,A) be a Tits index. For each s ∈ S\A, let s̃ be the

product of the longest element in the Coxeter group WA and the

longest element in the Coxeter group WΘ(s)∪A.

There is thus one element s̃ for each Θ-orbit in S\A.

Let S̃ denote the set consisting of all the elements s̃ and let

W̃ = 〈S̃〉.

Then

(W̃ , S̃)

is a Coxeter system called the relative Coxeter system of (M,Θ,A).



Γ-chambers

Let ∆ be a building of type M and let Γ be a subgroup of Aut(∆).

A Γ-residue is a residue stabilized by Γ.

A Γ-chamber is a minimal Γ-residue.

A Γ-panel is a Γ-residue P such that for some Γ-chamber C , P is
minimal among all the Γ-residues containing C .



Γ-chambers

Let ∆ be a building of type M and let Γ be a subgroup of Aut(∆).

A Γ-residue is a residue stabilized by Γ.

A Γ-chamber is a minimal Γ-residue.

A Γ-panel is a Γ-residue P such that for some Γ-chamber C , P is
minimal among all the Γ-residues containing C .

Definition

Let ∆Γ be the graph whose vertex set is the set of all Γ-chambers,
where two Γ-chambers are adjacent whenever they are contained in
a Γ-panel.



Main theorem of descent

Theorem

Let ∆ be a building of type M, let Γ be a subgroup of Aut(∆) and
let Θ be the subgroup of Aut(M) induced by Γ. Suppose that

there is a Γ-chamber C of type A and

◮ The subdiagram MA is spherical.



Main theorem of descent

Theorem

Let ∆ be a building of type M, let Γ be a subgroup of Aut(∆) and
let Θ be the subgroup of Aut(M) induced by Γ. Suppose that

there is a Γ-chamber C of type A and

◮ The subdiagram MA is spherical.

◮ Every Γ-panel containing C contains at least two other

Γ-chambers.



Main theorem of descent

Theorem

Let ∆ be a building of type M, let Γ be a subgroup of Aut(∆) and
let Θ be the subgroup of Aut(M) induced by Γ. Suppose that

there is a Γ-chamber C of type A and

◮ The subdiagram MA is spherical.

◮ Every Γ-panel containing C contains at least two other

Γ-chambers.

Then the following hold:

◮ Every Γ-chamber has type A.



Main theorem of descent

Theorem

Let ∆ be a building of type M, let Γ be a subgroup of Aut(∆) and
let Θ be the subgroup of Aut(M) induced by Γ. Suppose that

there is a Γ-chamber C of type A and

◮ The subdiagram MA is spherical.

◮ Every Γ-panel containing C contains at least two other

Γ-chambers.

Then the following hold:

◮ Every Γ-chamber has type A.

◮ (M,Θ,A) is a Tits index.



Main theorem of descent

Theorem

Let ∆ be a building of type M, let Γ be a subgroup of Aut(∆) and
let Θ be the subgroup of Aut(M) induced by Γ. Suppose that

there is a Γ-chamber C of type A and

◮ The subdiagram MA is spherical.

◮ Every Γ-panel containing C contains at least two other

Γ-chambers.

Then the following hold:

◮ Every Γ-chamber has type A.

◮ (M,Θ,A) is a Tits index.

◮ The graph ∆Γ is a building of type (W̃ , S̃), where (W̃ , S̃) is
the relative Coxeter diagram of (M,Θ,A).



Affine Buildings



Affine Coxeter matrices

The affine Coxeter diagrams are the Coxeter diagrams underlying
the extended Dynkin diagrams.

Every affine Coxeter diagram if of the form M̃, where M is one of
the spherical Coxeter diagrams Aℓ,Bℓ, . . . ,Gℓ.

The number of vertices of M̃ is one more than the number of
vertices of the spherical diagram M.



Affine buildings

An (irreducible) affine building is a building of type M̃ for some
affine Coxeter diagram M̃.

The apartments of an affine building of type M̃ have a canonical
representation as a tessellation of Euclidean space of dimension ℓ.

Example

An apartment A of a building X of type Ã2 looks like a Euclidean
space of dimension 2 tessellated by regular hexagons, each
subdivided into 6 equilateral triangles. These triangles are the
chambers of A.



The building at infinity

Let X be a building of type M̃.

Apartments contain sectors. A sector of X is a sector in one of its
apartments.

Two sectors are equivalent if their intersection is a sector.

The set of sector classes is the vertex set of a building X∞ of type
M. The building X∞ is called the building at infinity of X . It is
spherical, its rank is one less than the rank of X and

A 7→ A∞

is a bijection from the set of apartments of X to the set of
apartments of X∞.



Bruhat-Tits buildings

Definition

A Bruhat-Tits building is an irreducible affine building whose
building at infinity is Moufang.



The root groups of X∞

Let X is a Bruhat-Tits building, let A be an apartment of X and
let a be a “half-space” of A. Its parallel class consists of all
half-spaces contained in or containing a. There exists a unique root
α of the apartment A∞ of ∆ = X∞ such that the following hold:

◮ Every element g in the root group Uα of X∞ is induced by a
unique element ĝ ∈ Aut(X ).

◮ Let g be a non-trivial element of Uα. The fixed point set in A

of ĝ is a half-space of A parallel to a. This observation gives
rise to a function ϕα : U

∗
α → Z such that

ϕα(g) = ϕα(−g) and ϕα(g1+g2) ≥ min{ϕα(g1), ϕα(g2)}.

◮ The map
dα(g1, g2) = 2−ϕα(g1−g2)

is a metric on Uα.

◮ Uα is complete with respect to the metric dα.



The classification of Bruhat-Tits buildings

Theorem

A Bruhat-Tits building is uniquely determined by its building at

infinity.

Theorem

Let X be a Bruhat-Tits building and let ∆ = X∞. Then there is a

canonical isomorphism from Aut(X ) to Aut(∆).

(A Bruhat-Tits building is not, however, uniquely determined by its
residues.)



The classification of Bruhat-Tits buildings

Theorem

Let ∆ be a spherical building satisfying the Moufang condition and

let K be its field of definition. Then ∆ is the building at infinity of

a Bruhat-Tits building iff

◮ K is complete with respect to a discrete valuation and

◮ for each root α, the root group Uα is complete with respect

to the metric dα.

The second condition follows from the first if ∆ is the spherical
building associated with an absolutely simple algebraic group or if
∆ is simply laced.



The End


